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The wind-driven stably stratified mid-latitude oceanic surface turbulent boundary
layer is computationally simulated in the presence of a specified surface gravity-wave
field. The gravity waves have broad wavenumber and frequency spectra typical of
measured conditions in near-equilibrium with the mean wind speed. The simulation
model is based on (i) an asymptotic theory for the conservative dynamical effects
of waves on the wave-averaged boundary-layer currents and (ii) a boundary-layer
forcing by a stochastic representation of the impulses and energy fluxes in a field of
breaking waves. The wave influences are shown to be profound on both the mean
current profile and turbulent statistics compared to a simulation without these wave
influences and forced by an equivalent mean surface stress. As expected from previous
studies with partial combinations of these wave influences, Langmuir circulations due
to the wave-averaged vortex force make vertical eddy fluxes of momentum and
material concentration much more efficient and non-local (i.e. with negative eddy
viscosity near the surface), and they combine with the breakers to increase the
turbulent energy and dissipation rate. They also combine in an unexpected positive
feedback in which breaker-generated vorticity seeds the creation of a new Langmuir
circulation and instigates a deep strong intermittent downwelling jet that penetrates
through the boundary layer and increases the material entrainment rate at the base
of the layer. These wave effects on the boundary layer are greater for smaller wave
ages and higher mean wind speeds.

1. Introduction
The air–sea interface and more broadly the ocean mixed layer (or ocean boundary

layer, OBL) plays an important role in geophysical flows. It modulates air–sea fluxes
in the global ocean circulation (Large, McWilliams & Doney 1995; McWilliams
1996), and in the most extreme environment controls tropical cyclone intensity
(Emanuel 2004). The ocean surface layers support air–sea fluxes, surface gravity waves,
boundary-layer turbulence, Ekman currents and significant air (gas) entrainment
when the surface is disrupted by intermittent breaking waves. Despite the differences
in length scales O(1 mm–100 m) and time scales O(1 ms–1 h), the physics of these
phenomena are closely linked. Progress by direct computational methods has been
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impeded by the structural complexity of upper-ocean flows, disparity in magnitude
and time scales among the flow components, and by high Reynolds numbers Re. The
current generation of bulk (ensemble average) computational models of the OBL
used in large-scale prediction codes does not account for the dynamic nature of the
surface wave field. These 1-D (vertical column) parameterizations of the OBL (e.g.
Mellor & Yamada 1982; Large et al. 1995; Price, Weller & Pinkel 1986) use vertical
mixing rules partially based on past experience with the atmospheric boundary layer
and laboratory experiments. This perception of the OBL has been, in part, a practical
necessity as the hostile measuring environment does not permit easy probing of the
important interactions that determine the turbulent fluxes of momentum, scalars and
energy across the temporally and spatially evolving air–sea interface. While many
aspects of surface waves are well known, a clear understanding of their relationship
to fluxes, turbulence and currents has long been elusive. However, the impact of waves
on OBL dynamics is acknowledged in more recent bulk models (e.g. Craig & Banner
1994; McWilliams & Sullivan 2000; Smyth et al. 2002; Kantha & Clayson 2004;
Lewis & Belcher 2004; Melsom & SÆtra 2004; Ardhuin & Jenkins 2006; Rascale,
Ardhuin & Terray 2006), with improvements motivated by better measurements and
results from turbulence-resolving simulations with wave effects as described here.

The technique of large-eddy simulation (LES) calculates the currents and turbulence
in response to the fluxes using an embedded model for subgrid-scale turbulent mixing
and dissipation. Relatively recently, the wave influences associated with Stokes drift uuuSt

(i.e. vortex force and Lagrangian material transport) have been incorporated in LES
(Skyllingstad & Denbo 1995; McWilliams, Sullivan & Moeng 1997; Polton, Lewis &
Belcher 2004; Li, Garrett & Skyllingstad 2005). These influences represent conservative
wave–current interactions averaged over the more rapid wave fluctuations (Craik &
Leibovich 1976; McWilliams & Restrepo 1999; McWilliams, Restreppo & Lane 2004).
Their effect is to induce coherent Langmuir circulations in the OBL turbulence that
importantly modify the resulting mixing, dissipation and Ekman current profile. In
shallow water, depth-filling Langmuir cells also play important roles in sediment
transport (Gargett, Tejada-Martı́nez & Grosch 2004). Thorpe (2004, 2005) provides
recent reviews of Langmuir circulations and their role in upper ocean dynamics. We
note that low-Reynolds number direct numerical simulation (DNS) and LES have
previously been used to examine turbulent water flows, namely free-surface flows and
stress-driven interfaces, where the wave amplitudes and/or the wave phase speeds are
small compared to those considered here (e.g. Enstad, Nagaosa & Alendal 2006; Tsai
1998; Tsai & Yue 1996).

Intermittent wave breaking is also important in this regime, but it has rarely been
included in oceanic LES. Craig & Banner (1994) represented breaking as a surface
flux of turbulent kinetic energy which enhances mixing and dissipation rates near
the surface in a Reynolds-averaged boundary-layer model, and Noh, Min & Raasch
(2004) verified these effects in LES. Furthermore, breaking waves transfer momentum
from the wind-generated wave field to the oceanic turbulence and currents; this is the
dominant mechanism for the net momentum exchange between winds and currents
usually associated with the wave-averaged surface wind stress (Donelan 1998; Banner
& Peirson 1998). The conventional LES practice is to specify a mean surface stress τττ .
However, this does not adequately represent the intermittent injection of momentum
and energy from the wave field by breaking. An alternative LES representation of
breaking that captures both energy and momentum injection (Sullivan, McWilliams
& Melville 2004) is a random field of near-surface impulses whose attributes are
designed to match field and laboratory observations of breaking waves (e.g. Rapp
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& Melville 1990; Melville & Matusov 2002; Melville, Veron & White 2002) and the
mean fluxes of momentum and energy.

This paper reports LES for the OBL with both types of wave effects predominantly
for approximate equilibrium, or ‘fully-developed’, conditions among the wind, waves
and currents. However, we also show that the qualitative effects of the wave processes
are retained for smaller wave ages, or fetch-limited conditions. For a given mean
wind UUUa (e.g. the wind at the height z = 10 m) and sufficiently large fetch, the wave
field comes into a fully-developed wavenumber-spectral distribution for, say, the sea-
surface elevation, with generation by wind form stress balancing loss by breaking
integrated over the spectrum. The elevation spectrum implies a mean Stokes drift
profile uuuSt (z), and the breaker spectrum implies a probability distribution function for
the random impulses. The impulse distribution is normalized to have the equivalent
integrated current acceleration expected from the empirical bulk formula relating the
mean wind and wind stress τττ , as well as an energy input equivalent to the empirical
kinetic energy loss rate from the waves. Thus, the impulses can wholly replace τττ in
the conventional LES formulation and be a more faithful representation of the true
mechanisms of air–sea momentum and energy fluxes through the wave field.

Our results exhibit a subtle interplay between the vortex force and breaking.
Langmuir circulations intensify the surface vorticity and enhance turbulent transport
throughout the boundary layer into the underlying entrainment zone. Breakers
enhance the near-surface mixing, destroy the Monin–Obhukov similarity structure,
provide seed vorticity for wave–current (CL2, Leibovich 1983) instabilities, and limit
the spatial extent of the Langmuir circulations. Under certain circumstances breaker
responses and Langmuir circulations combine to make strong intermittent downward
jets that further enhance the vertical transport efficiency.

Section 2 presents the representation of wind and waves in near-equilibrium
conditions. Section 3 presents the stochastic breaker model. Section 4 is the LES
model formulation. Section 5 describes the experimental design. Section 6 is an
analysis of a primary experiment with Ua = 15 m s−1. Section 7 analyses model
sensitivities, especially to wind speeds up to a value of Ua = 30 m s−1, and wave age.
Finally, § 8 is a summary and discussion.

2. Winds and waves approaching equilibrium
For modeling wave effects in the ocean mixed layer, we must specify both the wave

spectrum to determine the profile of Stokes drift and the distribution (spectrum) of
breaking waves for transfer of momentum and kinetic energy to the underlying water
column. In both cases, our primary interest is the situation approaching wind–wave
equilibrium where the wave spectrum is well developed and the atmospheric inputs
of momentum and energy flux are perhaps best characterized by observations. Full
development refers to an asymptotic state in which the energy density, the peak
frequency and the shape of the wave spectrum are changing very slowly with time
following synoptic changes in the wind. We neglect the portion of wind input which
goes into bulk wave growth in the action balance equation (Komen et al. 1994, p. 47)
and always adopt the leading-order balance of wind input equal to dissipation by
breaking. Phillips (2002) has developed a theoretical model for the unsteady influence
of waves on Langmuir circulations.

Apart from overall equilibrium between wind and waves, or full-development,
an equilibrium subrange in a developing wind–wave spectrum may also exist. This
subrange corresponds to the region in which the sum of the wind input, nonlinear
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wave–wave interactions and the dissipation, mainly due to breaking, are in balance
(Phillips 1985).

2.1. Wave spectra and Stokes drift

The vertical profile of Stokes drift uSt (z) is a primary input to OBL models
that incorporate wave-averaged effects (e.g. McWilliams et al. 1997; Kantha &
Clayson 2004). Past LES typically estimate uSt (z) from monochromatic wave fields
(Skyllingstad & Denbo 1995; McWilliams et al. 1997; Noh et al. 2004) chosen to
approximate a dominant component in the wave spectrum (the work described
by Polton et al. (2004) is an exception). In the case of wind–wave equilibrium,
measurements of the wave spectrum are more complete and thus we can be more
precise with the specification of the Stokes profile. Recently, Alves, Banner & Young
(2003) revisited the classical Pierson–Moskowitz wave-height spectrum (Pierson &
Moskowitz 1964) for fully-developed seas, reanalysing the original database to refine
the spectral shape and the integral parameters that quantify the spectrum. A database
of 29 events was interrogated to establish the spectral shape and fitting constants.
Adhering to the spectral shape proposed by Donelan, Hamilton & Hui (1985), Alves
et al. (2003) favor the empirical spectral form,

F (f ) =
αw g2

(2 π)4 f 4 fp

exp

[
−

(
f

fp

)−4
]

, (2.1)

where f = σ/2π is the frequency, σ is the radial frequency, αw is the ‘Phillips constant’,
g is the gravitational acceleration and fp is the peak in the spectrum related to a
reference atmospheric wind Ua(z = 10 m) by

ν = fp Ua/g. (2.2)

Empirical constants that appear in the above expressions are ν ≈ 0.123 and αw ≈
6.15 × 10−3. The observations of significant wave height, Hs = 4〈η2〉1/2, where 〈η2〉 is
the variance of the surface displacement due to the waves, closely follow the curve fit

Hs = 0.24 U 2
a /g . (2.3)

The wave energy density E = ρog〈η2〉, where ρo is the density of the water. The phase
speed at the peak of the equilibrium wave height spectrum is cp,E = Ua/2πν. Thus
the phase speed at the peak is moving about 20% faster than the reference wind in
fully-developed conditions. The linear dispersion relationship c2 = g/k along with
f = g/2π c is used to move between frequency f , wavenumber k and phase speed
c spaces. The observations that are used to determine the wave spectral shape and
constants extend out to f/fp ≈ 4.

McWilliams & Restrepo (1999, equation 62), using the procedure outlined by
Kenyon (1969), show how to incorporate a full wave spectrum in the estimate of
uSt . For our LES (§ 4), we follow this approach and employ numerical quadrature to
evaluate

uSt (z) =
2

g

∫ ∞

0

F (σ ) σ 3 exp

[
2σ 2z

g

]
dσ . (2.4)

The main difference between the Alves–Donelan wave spectrum, given by (2.1),
and the Pierson–Moskowitz formula is that the former decays at a slower rate at
high frequencies, f −4 compared to f −5. This slope change has no influence on uSt

for z < −2 m, but for z = [−2, 0] m the Alves–Donelan spectrum generates a
sharper near-surface gradient in the Stokes profile compared to that obtained from
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the Pierson–Moskowitz wave spectrum. A high-frequency tail with slope f −5 can be
appended to the spectral shape given by (2.1) to extend its range of applicability (e.g.
Banner 1990; Terray et al. 1996).

2.2. Bulk atmospheric inputs of momentum and energy

At wind speeds above (6–8) m s−1, the wave field is the main transmitter of
atmospheric momentum and energy passing nearly 100% of these fluxes locally
to the underlying currents (Terray et al. 1996; Donelan 1998, 2001) primarily through
the action of wave breaking. Thus the global amount of momentum and energy that
is available to generate currents from breaking is known based on the atmospheric
inputs. The bulk aerodynamic method is most often used to determine the momentum
flux in the atmospheric surface layer. There is debate about the empirical constants
appearing in the formula

τττa = ρaCd |UUUa| UUUa , (2.5)

but this functional form is generally well accepted. Here ρa is the air density, Ua is
the mean wind at the reference height z = 10 m, and Cd is a wind speed dependent
drag coefficient. The atmospheric friction velocity is then u∗a =

√
|τττa|/ρa . For our

purposes we adopt the drag parameterization of Liu, Katsaros & Businger (1979),

Cd =

{
1.3 × 10−3 , Ua � 10 m s−1

(0.79 + 0.0509 × Ua) × 10−3, Ua � 10 m s−1
(2.6)

noting other prescriptions are available (e.g. Large & Pond 1982; Donelan 1998;
Fairall et al. 2003) that include the effects of finite fetch and the state of wave
development (or wave age). Observations indicate that the linear variation of Cd

with wind speed continues up to about 25–30 m s−1. For even higher winds there
are few field measurements (Powell, Vickery & Reinhold 2003), but both field and
laboratory data show that the drag coefficient saturates, or reaches a weak maximum,
around Cd ≈ 2.3 × 10−3 at wind speeds around 30–35 m s−1 (Donelan et al. 2004).
The causes of this regime change in Cd near the threshold for hurricane winds are a
topic of current research since the maximum intensity of hurricanes depends on the
ratio of the coefficients of momentum to enthalpy transfer across the air–sea interface
(Emanuel 2004).

Breaking waves supply momentum for current generation but also serve as a
significant source of kinetic energy for the water column. Our wave–OBL coupling
accounts for the energy flux flowing from winds to waves to currents. There are no
direct measurements of energy flux Ea from the atmosphere to the wave field and
thus an alternative method is required to determine this variable. Terray et al. (1996)
propose the parameterization

Ea = |τττa| ĉ , where ĉ = u∗a gt (cp/u∗a) , (2.7)

based on a wave-growth model developed by Donelan & Pierson (1987). In this
expression ĉ is an ‘effective phase speed’, a velocity scale characteristic of the wave
field, and it reflects contributions over the entire wave spectrum. Based on six different
observational datasets, Terray et al. (1996, figure 8) find that ĉ/u∗a (or gt ) depends
critically on the state of wave development. We adopt wave age, defined as the ratio
of the phase speed at the peak of the wave spectrum to the atmospheric friction
velocity cp/u∗a , as a bulk measure of wave development. gt is in the range 3–4 for
waves approaching full development (cp/u∗a ≈ 30), attains a maximum of about 7–9
for developing seas (cp/u∗a = 15–20), and falls to small values approximately 1–4 for
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very young waves (cp/u∗a < 10). The explicit conversion between wave age cp/u∗a

and Terray parameter gt used in the present work is given in table 1 in § 5. Terray
et al. (1996) find that dissipation measurements taken beneath breaking waves, when
scaled by the wind input Ea and significant wave height Hs , collapse their data over
a range of growing waves 4.3 < cp/u∗a < 7.4. Further support for the energy flux
parameterization (2.7) is provided by Drennan et al. (1996) as they show this form
also appears to apply for larger wave ages closer to wind–wave equilibrium. Phillips
(1985) (see also Melville 1994) has developed an equilibrium model for atmospheric
energy flux based on breaking statistics that is functionally different from the proposal
by Terray et al. (1996), but its predictions are in general agreement with (2.7). In
the absence of additional information, we adopt (2.7) as our prescription of the
atmospheric energy flux and consider the impacts of wave age in a limited range
approaching equilibrium cp/u∗a = (19–30).

As a consistency check we note that in the absence of other external energy sources
the vertically integrated dissipation rate in the water is approximately equal to the
average energy flux Ea from winds to waves:

Ea/ρo ≈
∫ 0

−∞
ε dz , (2.8)

where ε is the local dissipation rate per unit of water mass and z extends over
the depth of the water column. This integral balance is in accord with the basic
assumption that breaking is the dominant energy source (Terray et al. 1996). In our
simulations we use (2.8) as an indicator of flow stationarity and global conservation of
energy between the atmospheric inputs and dissipation in the water column. However,
the LES also includes current shears, stratification and Stokes drift effects that further
increase the dissipation in the water in addition to the contributions from breaking
waves.

At this point, notice that the specification of the wave fields, Stokes drift and fluxes
of momentum and energy can all be expressed in terms of the reference atmospheric
wind. Hence the primary atmospheric input to our LES model of the OBL is Ua .
Developing seas are parameterized by wave age as well as wind speed.

3. Stochastic breakers
The other physical process we wish to capture in our modeling is the intermittent

and dynamical influences of breaking waves. Breaking encompasses a wide range
of scales and is sufficiently complex that we must idealize this process, retaining
its essential ingredients. First, we assume that the onset of breaking–which is likely
linked to the local winds, wave–wave and wave–current interactions (Melville 1996)–is
a random process uniformly distributed in space and time. This is consistent with the
visual appearance of the broken sea surface under high wind conditions. However,
it is also well known that the incidence of large-scale breaking is related to the
group structure of the surface wave field, in an, as yet, not fully understood way
(Donelan, Longuet-Higgins & Turner 1972). In the present formulation the averaging
is over time scales much larger than the characteristic time of the wave groups, so
any departure from an assumption of random incidence of breaking is not justified.
Secondly, we represent an individual breaker as a compact function in space and
time that captures the (average) bulk impulse from breaking (Sullivan et al. 2004).
This avoids the considerable complexity of a full air–water simulation that cannot
simultaneously span the range of scales from bubbles to mixed-layer turbulence. Also,
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the imposed breaking impulses are assumed to be non-interacting, which allows a
field of breakers to be built from a linear superposition of discrete events.

3.1. Momentum transfer from waves to currents

The wave field is an intermediate reservoir that releases momentum to the underlying
water in localized intermittent impulses, and the primary path to current generation
is through wave breaking. The momentum passed to the OBL is then a summation of
randomly occurring breaking events. In our modeling the acceleration from a single
event has only horizontal components,

AAAm = Am(xxx, t, cm)(x̂xx cosΘm + ŷyy sinΘm) , (3.1)

where Θm is the breaker’s angle of orientation in the LES coordinate system and Am

is our parameterization of the local space-time structure of acceleration amplitude
for a single event in terms of its phase speed, cm, and initiating location and time,
(xxxm, tm) (§ 3.2). The breaker’s phase speed vector is cccm = cm(x̂xx cos Θm + ŷyy sinΘm). A
single event provides momentum

MMMm(cm, Θm) = ρo

∫ T (cm)

0

∫ V (cm)

0

AAAm(xxx, t, cm, Θm) dxxx dt (3.2)

with magnitude

|MMMm| = ρo

∫ T (cm)

0

∫ V (cm)

0

Am(xxx, t, cm) dxxx dt . (3.3)

The integration limits reflect the compact duration of breaking over space and time
relative to the initiating coordinates, i.e. the impulse is non-zero over the period, T (c),
and volume, V (c), of the breaking wave.

The total momentum supplied to the currents is the integrated effect of many
randomly occurring breaking events of varying size, speed and orientation,

MMMb = N

∫ Θ ∫ c

MMM(c, Θ) c P(c, Θ) dc dΘ . (3.4)

In this expression, N is the total number of breakers and P(c, Θ) is the probability
density function (PDF) of breaker speeds c with orientation Θ and is normalized
according to the definitions,

P (c) =

∫ Θ

c P(c, Θ) dΘ, where

∫ c

P (c) dc = 1 . (3.5)

N and P(c, Θ) are functions of the environmental conditions, in particular wind
speed and wave age (e.g. Wu 1988; Gemmrich & Farmer 1999; Melville & Matusov
2002).

Momentum conservation between atmosphere and ocean limits the total amount
of momentum that can be passed through the wave field. The long-time, large-area
total momentum conservation rule expressed in terms of the horizontal momentum
flux, τττa , from the atmosphere over an area of surface water, S, and time period, Tp ,
is

τττa S Tp = MMMb , (3.6)

where MMMb is the momentum transferred by a field of breakers. Substitution of (3.4)
into (3.6) connects the bulk atmospheric momentum to the probability of breaking
and also defines a critical breaking parameter in the LES. We define the average rate
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of breaker generation as

Ṅ =
N

STp

, (3.7)

where Ṅ is the number of breakers created per unit of water surface area per unit
of time (units of s−1 m−2). In other words, a sufficient number of breakers N at the
proper scale must be created at a rate Ṅ to match the long-time large-area average
of momentum (and energy) transfer in air and water given by (3.6). It is expected
that Ṅ = Ṅ(Ua, cp/u∗a).

Breaking releases momentum to generate currents but also energizes the water
column, which is vividly apparent from images of breaking in the laboratory and in
the field. Thus our modeling also needs to account for energy transfer from winds
to waves to currents. From consideration of the reduction in momentum and energy
densities of the wave field due to breaking (Phillips 1977), the total (kinetic and
potential) energy released by an event is cccm ··· MMMm (Phillips 1985). This is consistent
with the measurements of Terray et al. (1996), is similar to that used in second-
order closure parameterizations (Craig & Banner 1994) and is consistent with our
parameterization for breaker momentum†. By analogy with (3.4) and (3.6) the total
energy transferred by a field of breakers is then

Eb = N

∫ Θ ∫ c

ccc ··· MMM(c, Θ) c P(c, Θ) dc dΘ . (3.8)

Matching the atmospheric energy flux from winds to waves requires

Ea S Tp = Eb . (3.9)

3.2. Momentum impulse from a single breaker

The breaker model used here (Sullivan et al. 2004) is based on laboratory
measurements by Rapp & Melville (1990), Loewen & Melville (1990), Melville et al.
(2002) and video imagery of breaking in the field (Melville & Matusov 2002). The
main results of the laboratory experiments are that: the duration of active breaking
is O(T ); the maximum fluid velocity during breaking is O(c); and the depth of
penetration of the broken fluid is O(2a), where T , c and a, are the characteristic
period, linear phase speed and amplitude, respectively, of the breaking wave. The
laboratory experiments also show that the post-breaking flow variables scale with
the pre-breaking variables even at large times. We refer to this set of dimensional
estimates as Froude scaling of breaking, with length and time scales related through
the linear dispersion relationship. It is the basis of our formulation of the breaking
model.

It may seem curious that a strongly nonlinear process such as breaking can be
scaled using a linear dispersion relationship. However, there are some rather strong
constraints on the theoretical maximum and empirical maximum phase velocities for
surface gravity waves, and it is the phase velocity that relates the length and time
scales. The maximum phase speed for nonlinear surface gravity waves is 9% larger
than the linear phase speed and occurs at a wave slope of 0.436, slightly less than
the slope of 0.443 for the Stokes limiting wave (Longuet-Higgins 1975). However,
in practice fast instabilities and breaking tend to limit the maximum practical wave

† At low winds breaking is less obviously the dominant air–sea transfer process. Our breaker
representation is thus relevant to the wind regime with Ua greater than about 5 m s−1 (Makin,
Kudryavtsev & Mastenbroek 1995; Banner & Peirson 1998).
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slope to 0.3, for which the corresponding steady wave phase velocity is just 5%
larger than the linear phase speed. Thus for breaking kinematics, the use of the linear
phase speed may involve errors of around 5%. For the dynamics, where the breaking
momentum and energy fluxes scale as the fourth and fifth powers of the phase speed
(Phillips 1985), the errors for individual breaking events may be up to 22% and 28%,
respectively. However, the number of breakers is constrained to satisfy the bulk fluxes,
so in this model, errors will flow through to the breaking statistics. Given the order
of magnitude scatter in observations of breaking statistics, any errors in the scaling
are within the scatter of the current observations.

The formula for an individual breaker impulse is

I =

∫ ∞

0

A dt, (3.10)

where

A = kb

g

2π
T(α) X(β) Y(δ) Z(γ ) , (3.11)

with the (T, X, Y, Z) space-time shape functions that are determined from DNS of
a single isolated breaker designed to replicate the laboratory results of Melville et al.
(2002). All breakers are assumed to be self-similar and separable in dimensionless
time and space coordinates,

α =
t − to

T
, β =

x − xo

c(t − to)
,

(3.12)

δ =
2(y − yo)

λ
, γ =

z

χc(t − to)
,

with (to, xo, yo, zo = 0) the onset time and position of the chosen breaker; (c, λ, T )
are its phase speed, wavelength and period. The wave characteristics (c, λ, T ) are
related to each other through the deep-water linear dispersion relation c2 = gλ/2π
with T = λ/c. Notice that in the normalized vertical coordinate (3.12) the constant
0 < χ < 1, which is just the aspect ratio of the depth to length of the breaker,
controls the depth penetration of the breaker forcing; χ = 0.2 matches the laboratory
measurements of Melville et al. (2002). The specific functional forms for the shape
functions is the set of equations (3.3) given in Sullivan et al. (2004). The momentum
supplied by our breaking model (3.11) varies with wave phase speed c because of the
explicit dependences in (3.12). If we substitute the model (3.11) for A into (3.3) for
breaker momentum and convert the time and space integrations dxxx dt → dβ dδ dγ dα

we find the breaker momentum increases rapidly with phase speed, i.e. MMM(c) ∼ c7.
Similarly the breaker energy grows as c8. These power-law dependences impact the
determination of the breaker PDF.

3.3. Breaker PDF

Bulk conservation of momentum and energy fluxes between the atmosphere and ocean
constrains the properties of the breaker field. Given Ea STp = Eb and τττa STp = MMMb

and atmospheric inputs the unknowns are then the distribution of breakers across c

(here the PDF of c) and the breaker generation rate. N is first eliminated by forming
the energy–momentum flux ratio,

Ea/|τττa| = Eb/|MMMb| . (3.13)

Substitution of the parameterization for atmospheric energy flux, given by (2.7), and
the definitions of breaker momentum and energy, given by (3.4) and (3.8), into (3.13)
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leads to

u∗a gt

∫ Θ ∫ c

|MMM(c, Θ)| c P(c, Θ) dc dΘ =

∫ Θ ∫ c

ccc ··· MMM(c, Θ) c P(c, Θ) dc dΘ .

(3.14)
Equation (3.14) is a weak global constraint on the breaker PDF. The distribution

of (discrete) breakers with phase speed and direction is unknown and additional
information is needed to develop a specific computational form for P (c, Θ).
Quantifying the distribution and magnitude of breakers in the field is a challenging
observational task and as a result the wave-breaking dissipation spectrum remains
the least understood term in the wave-action equation used in numerical wave
forecasting (Komen et al. 1994; Donelan 2001). Recently, Melville & Matusov (2002)
and Gemmrich (2005) attempted to measure breaking statistics using video imagery
from an aircraft and a floating instrument platform (R/P FLIP), respectively. These
measurements were partly motivated by the theoretical work of Phillips (1985) that
proposes breaking statistics can be built from Λ(c)dc, the average length of breaking
crests per unit area of ocean surface traveling at velocities in the range (c, c + dc).
Digitized video output supplies data on the distribution of Λ(c), moments of Λ(c)
(corresponding to momentum and energy flux from waves to currents), directional
distribution of breakers, as well as other statistics. The video measurement technique
relies on imaging active whitecaps: breakers with visible air entrainment. Breakers
generating few bubbles or foam are missed by the detection algorithms leading to
an underestimate of small-scale breaking. Melville & Matusov (2002) estimate the
small-scale resolution in their observations to be λ ≈ 0.7 m corresponding to a phase
speed c ≈ 1 m s−1. An important result from this dataset shows an exponential
decrease of Λ(c) with c and a variation of Λ(c) as wind speed cubed over the range
of wind speeds 7.2–13.6 m s−1.

A direct connection between the PDF of breaking that appears in (3.14) and
measurements of Λ(c) depends on multiple unknown factors, including the model for
breaker momentum transfer. Given this ambiguity we make two assumptions: (I) we
neglect the directional distribution of breakers and assume alignment between the
surface winds and breakers noting that this dependence can easily be introduced when
more observational data become available; (II) we adopt an exponential functional
form for the breaker PDF by analogy with the observations of Melville & Matusov
(2002) with the matching condition (3.14) used to determine any unknown coefficients.
An important advantage of this approach is that bulk conservation of momentum
and energy is enforced. The wind-speed-dependent breaker PDF used here is thus

P (c) = b1 exp(−b2 c/u∗a), (3.15)

where (b1, b2) are modeling constants. Our preference for using a wind speed
dependence based on u∗a instead of Ua follows from the explicit appearance of
friction velocity in (3.14) and the numerical evaluation of (3.14) discussed near (3.16).
b1 is chosen to define a unity PDF, i.e.

∫
P (c)dc = 1, while b2 is introduced so as to

satisfy the expression given by (3.14).
As noted above, measurements of the distribution of breakers and their dynamical

importance are incomplete at low values of c (i.e. at small scales). The theoretical
model of Phillips (1985, p. 524) predicts that the total momentum flux from wave
breaking depends on the high wavenumbers at the upper end of the equilibrium range
k1. In this theory, momentum conservation requires the equilibrium range to terminate
at a cutoff wavenumber k1 = rg/u2

∗a or minimum phase speed c1/u∗a = 1/
√

r with
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0 < r < 1. Phillips (1985) estimates r1/2 lies below 0.4 but values as large as
0.7 are possible. A typical range of values for wind speed Ua = 15 m s−1 is then
c1 ≈ 0.8−1.5 m s−1. Belcher & Vassilicos (1997) and Hara & Belcher (2002) offer
improvements to the model of Phillips (1985) by including the sheltering effect of
long waves on short waves in the equilibrium range. The model accounts for the
momentum flux from the wind to the longer waves leaving a smaller stress to force
growth of the shorter waves. Assuming that the dissipation spectrum is proportional
to the wind input, their model then predicts that breaking crests of shorter waves are
less frequent especially in high winds u∗a > 0.5 m s−1. An analysis of measured wave
height spectra by Donelan (2001) also shows the growth of small waves is modulated
by long waves leading to a net reduction in their energy density, also implying a
reduced contribution to fluxes from small scale breaking. (However, the full problem
of long-wave–short-wave interaction, both through direct hydrodynamic interactions
and indirectly through coupling with the wind, remains one of the unsolved problems
in air–sea interaction and ocean remote sensing.)

Based on these theoretical predictions and sparse observations we need to limit
the breaking at small scales. However, given the uncertain nature of the available
results, we simply choose to truncate the PDF of breaking at a small phase speed c1

according to Phillips (1985) that depends on wind stress. Then (3.14) reduces to the
computational rule, ∫ cp

c1

|MMM(c)|[gt − c/u∗a ] P (c) dc = 0 , (3.16)

with the PDF given by (3.15). The PDF of breaking depends on our model for
breaker momentum flux, wave age contained in the Terray parameter gt = gt (cp/u∗a)
and wind stress. Because of the exponential decay of the PDF at large c the integral
converges rapidly and is only weakly dependent on the upper limit of integration
cp . A rapid decay of the PDF with increasing c is required in order to satisfy (3.16)
since the breaker momentum MMM(c) ∼ c7. This makes the determination of b2 delicate.
Based on a numerical evaluation of (3.16) we find for a given wave age cp/u∗a (or
Terray parameter gt ) that a single value of the modeling constant b2 is capable
of satisfying (3.16) to a good approximation across a wide range of wind speeds
(5–30 m s−1). This result supports our choice of wind speed scaling based on u∗a

in (3.15).
Once the PDF of breaking is determined we retrace our steps and next find the

number of breakers or breaker generation rate Ṅ by evaluating the momentum
conservation rule (3.6); its right-hand side is given by (3.4). Specifically, Ṅ is chosen
to satisfy

τττa = Ṅ ρo

∫ cp

c1

∫ T (c)

0

∫ V (c)

0

P (c) A(xxx, t, c) dxxx dt dc (3.17)

for each wind speed and wave age. Typical PDFs and breaker generation rates are
shown in figures 1 and 2 for varying Ua and cp/u∗a . Notice how the PDF in figure
1 shifts towards larger scales, larger values of c, with increasing winds. Also, for
a fixed wind speed larger breakers are obtained for wave ages in the intermediate
range cp/u∗ ≈ 19−30 (developing seas) compared to those in the equilibrium range
cp/u∗a > 30 (fully-developed seas). A similar dependence of the breaking PDF
on wave age is also found in the observations of Gemmrich (2005, figure 3). The
breaker generation rate decays as the wind speed increases or wave age decreases, a
consequence of an overall shift in the PDF towards large-scale breaking. An important
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Figure 1. The PDF of breaking P (c) = e−b2c/u∗a for varying wind speeds and small variations
in wave age. In (a) P (c) is shown for wind speeds Ua = (5, 10, 15, 20, 30) m s−1 for
waves approaching equilibrium cp/u∗a = 30, Phillips parameter r = 0.2, and PDF constant

b2 = 2.196. In (b) the winds are held constant Ua = 15 m s−1 and the wave age varies,
cp/u∗a = (30, 23, 19) while b2 = (2.196, 1.46, 1.06).

attribute of the exponential PDF is that it leads to rapid convergence of the integrals
(3.4) and (3.8) for total breaker momentum and energy as the phase speed c increases.
Computationally, this means that a finite number of draws from the PDF will closely
satisfy the momentum and energy flux balances between the atmosphere and ocean.
Then the details of the large-c tail of the PDF are not critical. We find more than
98% of the breaker momentum and energy is captured by breakers satisfying the
criterion P (c) > 10−6. Other functional forms for the breaker PDF do not satisfy this
criterion (see Sullivan, McWilliams & Melville 2005).

The density distributions,

Ṅ
MMM(c, Θ) c P(c, Θ)

τττa

and Ṅ
ccc ··· MMM(c, Θ) c P(c, Θ)

Ea

, (3.18)

provide information about the partitioning of breaker momentum and breaker energy
across the range of phase speeds, c. These density distributions (or breaker spectra)
are normalized so that their integrals over (c, θ) equal unity and are the companions
to the wave-height spectra given by (2.1). Figure 3 shows the phase speeds (cτ , cE),
where (3.18) attain their maximum values for varying wind speed and wave age. Notice
when cp/u∗a � 30 (or gt > 4), the breaker momentum and energy distributions peak
at an intermediate phase speed. For example, with Ua = 15 m s−1 and cp/u∗a = 23
the maximum contributions to breaker momentum and energy, weighted by the PDF,
occurs in the range c ≈ 3–4 m s−1. Then the lower limit c1 plays a minor role in
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Figure 2. The rate of breaker generation, Ṅ , for varying winds and wave age. For
(Ua, cp/u∗a) =(15 m s−1, 30) and an x–y spatial domain of 300 m × 300 m approximately

5 × 106 breakers are generated per hour.

determining the PDF; the breaker PDF is more dependent on wave age and wind
speed than on the minimum phase speed c1. Melville & Matusov (2002) also found
the moments c4Λ(c) and c5Λ(c) reach a maximum in a similar range of phase speeds.
They estimate the wave age of their observations to be in the range cp/u∗a = 16−24,
which corresponds to gt = 8−5.

The stochastic breaking model described above can be used to make an estimate of
the fractional area of water covered by breakers, i.e. the whitecap coverage Wc, which
is a quantity obtained from video imagery. Field observations of visible whitecaps, i.e.
those with λ � 1 m report Wc ∼ 1.75 U 3.75

a over the wind speed range Ua = 2, 20 m s−1

(Wu 1983). At higher wind speeds, closer to hurricane conditions, the available data
are limited but the whitecap coverage is expected to reach a limiting value. Predictions
from the rectilinear breaking model described and the breaker PDF shown in
figure 1 with a lower bound c � 1.25 m s−1 (or λ = 1 m) are in good agreement with
this empirical correlation, but saturate at a wind speed near Ua ∼ 17 m s−1. This
agreement shows the Froude scaling used to build the discrete breaker model holds
over a wide range of wind speed.

The dependence of P (c) and Ṅ on wind speed and wave age, shown in figures 1 and
2, has important implications for the interactions between vortex force and breaking
as discussed in § 6. For a given wind speed, growing seas are forced more strongly by
the winds, the waves are generally steeper and hence break at larger scales closer to
the peak in the wave spectrum. Because breaker momentum increases as c7 the total
number of breakers required to balance the wind stress decreases with decreasing
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Figure 3. Variation of the peak phase speed for breaker momentum flux cτ (solid line) and
energy flux cE (dashed line) with wind speed and wave age. The phase speeds are normalized
by the maximum phase speed in the wave-height spectrum cp .

wave age. Meanwhile as winds and waves approach equilibrium the overall steepness
of the wave field relaxes and then breaking shifts towards the smaller (steeper) waves.
Again because of the c7 dependence the total number of breakers required to support
the wind stress in the equilibrium range must then increase, i.e. many small breakers
dump their momentum into currents. Larger breakers are more intermittent but their
associated vorticity fields are more vigorous and capable of interacting with the vortex
force. The interaction between breaking and vortex force thus exhibits a wave age
dependence.

4. LES model of the OBL with wave effects
The LES model we use to examine OBL turbulence is a conventional one (Moeng

1984; Sullivan, McWilliams & Moeng 1996; McWilliams et al. 1997) but is extensively
modified to account for surface wave effects: it is based on the incompressible
Boussinesq equations with a single-point second-moment turbulent kinetic energy
(TKE) closure subgrid-scale parameterization and a flat top (ocean) surface. The
added wave effects are the vortex force and Lagrangian mean advection associated
with Stokes drift, uuuSt , and a wave-averaged increment to the pressure that arises
through conservative wave–current interaction (McWilliams et al. 1997), as well as
additional acceleration and energy generation due to non-conservative wave breaking
(Sullivan et al. 2004). The governing equations for momentum, subgrid-scale TKE,
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and density (i.e. the same as for any material scalar concentration) are the following:

∂ui

∂t
= − ∂

∂xj

(ujui + τij ) − δi3

gρ

ρo

− ∂π

∂xi

− εijkfj

(
uk + uSt

k

)
+ εijku

St
j ωk +

∑
m

A
m

i , (4.1a)

∂e

∂t
= · · · − uSt

j

∂e

∂xj

− τij

∂uSt
i

∂xj

+
∑

m

Wm, (4.1b)

∂ρ

∂t
= − ∂

∂xj

(ujρ + τjρ) − uSt
j

∂ρ

∂xj

. (4.1c)

In (4.1) spatially filtered (or resolved) variables are denoted with an overbar. Here
(uuu, ω = ∇×uuu) are the resolved-scale velocity and vorticity; e is the subgrid-scale TKE;
ρ is the density; and the generalized pressure field is

π =
p

ρ̃o

+
2

3
e +

1

2

[(
ui + uSt

i

)(
ui + uSt

i

)
− uiui

]
. (4.2)

Note with this flux form of the momentum equations, π reduces to p/ρo + 2e/3 in
the absence of a wave field. The effects of m = 1, . . . , M discrete wave-breaking
events are represented by a resolved-scale acceleration, AAA

m
, and a subgrid-scale TKE

generation rate, Wm. The dots in the TKE equation denote all the other terms
(namely advection, production, buoyancy, diffusion and dissipation) that appear in
the conventional closure formulation. Other variables appearing in this equation
set are: the Coriolis frequency, fff = (0, 0, f ); reference density, ρ̃o; gravitational
acceleration, g; and subgrid-scale momentum and density fluxes, (τij , τiρ), respectively.
These subgrid-scale fluxes are modeled using the eddy viscosity prescription described
by Moeng (e.g. Moeng 1984) and Sullivan et al. (1994) which implies that the principal
feedback of e on uuu and ρ occurs through subgrid-scale mixing with eddy viscosity
and diffusivities (νt , νs) ∝ e1/2.

This LES model (4.1) includes some wave effects without actually resolving the
oscillatory and breaking wave motions themselves. By otherwise neglecting wave
dynamics, there is an implicit assumption that the wave quantities are unaffected by
the currents; this is explicit in the particular rules specified for AAA, W and uuuSt . Further
simplifications are the neglect of the positive buoyancy caused by air entrained into
bubbles in breaking waves (Lamarre & Melville 1991) and the assumption of a
linearized equation of state where density is proportional to temperature θ . Since
the wave influences on deforming the oceanic free surface are averaged out in this
formulation, the wave effects on pressure do not enter explicitly into the model since
π is calculated by solving the pressure-Poisson equation derived from taking the
divergence of the momentum equation and applying the incompressibility condition.
This is the standard method of determining the pressure with numerical techniques
based on fractional step methods (Armfield & Street 1999; Ferziger & Perić 2002).

4.1. Vortex force

Wave-averaged influences enter as Stokes advection in the TKE and scalar equations
and as a generalized vortex force, uuuSt ×(f ẑzz+ωωω), in the momentum equation. The vortex
force has a significant influence on the turbulent eddies and their vertical fluxes in
the OBL through the generation of Langmuir circulations (Craik & Leibovich 1976;
McWilliams et al. 1997). Wave effects also directly impact subgrid-scale energy since
its balance equation includes a Stokes production term, i.e. subgrid-scale stresses
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working on the vertical gradient of the Stokes drift. An analogous term appears in
the TKE balance for resolved scales (McWilliams et al. 1997, equation 5.1), and Stokes
production has recently been included in some one-dimensional, Reynolds-averaged
models of the OBL, (Kantha & Clayson 2004). In contrast to the Reynolds-averaged
models, the local subgrid-scale energy transfer from Stokes production in an LES can
be either positive or negative since ∂uSt/∂z has a given orientation and sign and τ13

fluctuates in time and space over the LES grid. Because of the eddy-viscosity closure
for vertical momentum flux, the long-time impact of Stokes production for e depends
on the current and Stokes drift shears; i.e. for a steady uniform uuuSt ,

−
〈

τij

∂uSt
i

∂xj

〉
=

〈
νt

(
∂u

∂z
+

∂w

∂x

)〉
∂uSt

∂z
+

〈
νt

(
∂v

∂z
+

∂w

∂y

)〉
∂vSt

∂z
, (4.3)

where 〈 〉 indicates an ensemble average. The magnitude of the Stokes drift often
exceeds the horizontal current speed near the surface, leading to substantial TKE
advection. Finally, the coupling of uSt and e is implicit because of the influence of
waves on the resolved currents. Stokes advection and production of subgrid-scale e,
which are absent in our previous LES (McWilliams et al. 1997), are expected to be
more important in the current simulations that account for a full wave spectrum.

4.2. Resolved and subgrid-scale breakers

In order to implement our LES with breakers we need to account for the spatial
filtering associated with numerical discretization. Formally, a filtered field f (xxx) → f (xxx)
is defined by the operation,

f (xxx) =

∫
f (xxx′) G(xxx − xxx′) dxxx′ , (4.4)

where G(xxx) is a low-pass spatial filter with characteristic length scale ∆; resolved and
subgrid-scale motions have scales l > ∆ and l < ∆, respectively.

The computational grid spacing limits our ability to temporally and spatially
resolve the breaker wave field. Thus we introduce a minimum breaker phase speed
c∆ = (g∆/2π)1/2, based on the LES filter scale ∆, to separate resolved and unresolved
breakers. The intermittent space-time properties of breakers c < c∆ cannot be
captured on the LES grid, but their bulk influence must still be accounted for
as they contribute to the overall fluxes of momentum and energy. A consistent scale
decomposition of the momentum flux due to breaking is then

τττa = Ṅ

∫ c∆

0

MMM(c) P (c) dc + Ṅ

∫ cp

c∆

MMM(c) P (c) dc , (4.5)

where the first and second terms on the right-hand-side are contributions from
subgrid-scale and resolved breakers, respectively. Equation (4.5) follows from
combining (3.4), (3.6) and (3.7) and the discussion in § 3.3. In computational practice,
any draws made from the PDF with phase speed c < c∆ are considered subgrid-scale
and parameterized as a constant (viscous) stress τττo applied at the water surface. Thus
the LES representation of (4.5) is

τττa = τττo + Ṅ

∫ cp

c∆

MMM(c) P (c) dc . (4.6)

The subgrid-scale contribution to momentum flux τττo is known when the grid mesh
is specified, i.e. τττo is calculated prior to integration of the governing equations. Note
(4.5) behaves properly with changing grid spacing. In the limit where ∆ is large all
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breaking becomes subgrid-scale and then the surface forcing reduces to conventional
constant stress.

By analogy with momentum flux the decomposition of the wave (breaker) energy
flux into small- and large-scale pieces is

Ea = Eo + Ṅ

∫ cp

c∆

ccc ··· MMM(c) P (c) dc , (4.7)

where

Eo = Ṅ

∫ c∆

0

ccc ··· MMM(c) P (c) dc . (4.8)

The energy flux Eo from small-scale breakers c < c∆ is tightly confined to the water
surface, while the energy flux from larger-scale breakers c > c∆ is naturally distributed
over a finite horizontal extent and vertical depth spanning multiple gridpoints.

In order to expose the breaker energetics in our LES model we construct
kinetic energy equations for the total, resolved and subgrid-scale components. The
contribution of breakers to the evolution of filtered total kinetic energy per unit of
water mass E = ui ui/2,

∂E

∂t
≡ ui

∂ui

∂t
= · · · + ui Ai , (4.9)

depends on the (unknown) correlation between total velocity and breaker impulses.
Here dots denote all other terms in the kinetic energy equation, i.e. advection,
production, buoyancy, diffusion and dissipation (Moeng 1984). Combining (4.9) with
the transport equation for resolved kinetic energy Er = ui ui/2,

∂Er

∂t
≡ ui

∂ui

∂t
= · · · + ui Ai , (4.10)

leads to the TKE equation for subgrid-scale energy e = (ui ui − ui ui)/2

∂e

∂t
=

∂E

∂t
− ∂Er

∂t
= · · · + W . (4.11)

In (4.11), the subgrid-scale work done by breaking,

W = ui Ai − ui Ai , (4.12)

is unknown and must be modeled consistently in terms of the resolved field to match
the input energy flux Ea . Equating the volume work done by breakers in the water
column to the input energy flux from winds to waves requires

Ea

ρo

=
1

S

∫
V

ui Ai dV =
1

S

∫
V

(
ui Ai + W

)
dV . (4.13)

Inspection of (4.13), (4.7), and (4.8) guides our model design for W . We adopt the
two-part model,

W (xxx, t) =
1

ρo

∂Eo

∂z
H (z) +

∑
m

kw cccm ··· AAAm , (4.14)

where the Heaviside function is defined as H (z � 0) = 1, H (z < 0) = 0. The first term
in (4.14) is the gradient of the small-scale energy flux from the wave field at the water
surface (z = 0) and can be explicitly computed from the discrete event breaker model
and the PDF of breaking; it varies with wind speed, wave age and LES filter scale
∆. The second term in (4.14) is the work done by the sum of m individual large-scale
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breakers with c > c∆; it distributes breaker work over a finite depth and mimics the
intermittent space-time character of the momentum impulses. In principle, given Ea

and Eo the work constant kw is chosen to satisfy (4.13). However, because of the
dependence on the resolved field in (4.13), kw can only be found iteratively, i.e. by
first choosing a trial kw , running the LES code, and post-checking the results against
Ea . Then kw is adjusted accordingly to satisfy (4.13); we find kw ∼ 1.3.

It is interesting to compare our model for breaker work (4.14) with the breaker
energy flux model first proposed by Craig & Banner (1994) (the latter is used in the
LES described by Noh et al. (2004)). Craig & Banner (1994) collapse the influence of
breaking onto the water surface, with no depth dependence, and replace the temporal
and spatial variability of breaking by an ensemble average inherent in second-order
closure modeling. The first term of (4.14) is similar to the Craig & Banner (1994)
model but only has contributions from the subgrid-scale piece of the wave spectrum,
i.e. breakers with c < c∆. This is consistent with the LES decomposition into resolved
and subgrid-scale fields. For a fixed wave state, as ∆ → ∞ the work done by breaking
tends to the ensemble average. Unlike Craig & Banner (1994) Eo varies with wave
age because of the dependence of the PDF on wave state.

5. Simulations with wave effects
In order to evaluate the impacts and interactions between wave breaking, vortex

force and turbulence we incorporated the modeling ideas and equations of § 2-4 into
a large-eddy simulation code for the OBL. Similarly to McWilliams et al. (1997) the
boundary conditions are periodic in the lateral (x−y) directions, no flow at the lower
boundary with a radiation condition allowing gravity waves to escape (Klemp &
Durran 1983; McWilliams et al. 1997). The imposed surface stress depends on wind
speed and the PDF of breaking as discussed previously. The LES algorithm with
stochastic breakers is sufficiently novel (and complex) that a brief description of the
code is provided in the Appendix. Further algorithmic details, numerical method and
the subgrid-scale model used to solve the equation set (without wave breaking) are
fully presented in McWilliams et al. (1997), Sullivan et al. (1996), Sullivan, McWilliams
& Moeng (1994) and Moeng (1984). A direct numerical simulation code for the OBL
with single-scale breakers is outlined in Sullivan et al. (2004).

An exhaustive exploration of the large parameter space encompassing variations
in wind speed, wave age, buoyancy, varying combinations of wave effects and other
physical processes is not possible because of finite computational resources. The scope
of the current study focuses on OBL dynamics when wave influences are important
and in particular when intermittent breaking is a dominant surface-layer process. For
the present investigation we choose a moderately high wind speed Ua = 15 m s−1.
The suite of experiments compares four types of simulations: a baseline simulation
driven by uniform (constant) surface stress with no wave effects; the conventional
posing plus wave-averaged Stokes drift terms (McWilliams et al. 1997); a posing
with stochastic forcing representing breaking waves; and, a posing with stochastic
forcing plus Stokes drift terms. In addition, solution sensitivity tests are performed
to examine the consequences of modestly varying wave age (as contained in the
Terray parameter), an increase in wind speed to Ua = 30 m s−1 and a decrease in
the Stokes drift profile for a fetch-limited wave spectrum. These explorations are
intended to illustrate the solution robustness and are mild excursions into the regime
of disequilibrium winds and waves. A summary of the simulations and the naming
conventions used to identify the various cases is given in table 1. A wave age range is
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Run name Forcing Stokes drift cp/u∗a gt Ua (m s−1) u∗o (m s−1) h (m)
U uniform stress NA NA NA 15 0.0187 −48.6

no wave effects
U + St uniform stress Yes NA NA 15 0.0187 −51.3
B1 breaking No >30 3.9 15 0.0187 −46.6
B1 + St breaking Yes >30 3.9 15 0.0185 −48.6
B2 breaking No 23 ± 3 5.5 15 0.0184 −49.4
B2 + St breaking Yes 23 ± 3 5.5 15 0.0187 −46.3
B3 breaking No 19 ± 3 7.4 15 0.0187 −52.1
B3 + St breaking Yes 19 ± 3 7.4 15 0.0195 −48.4
†B3 + FSt breaking Yes 19 ± 3 7.4 15 0.0194 −46.7
H1 + St breaking Yes >30 3.9 30 0.0451 −71.7

Table 1. Simulation properties

† The Stokes drift in this simulation is based on a fetch-limited wave-height spectrum as discussed
in § 7.

supplied in table 1 to indicate the uncertainty in the estimate of gt based on the data
of Terray et al. (1996, figure 8).

The setup of the simulations is similar to McWilliams et al. (1997) except we use
larger domains and finer grid resolutions. The initial state of the OBL is neutral
stratification from the surface to a mixed layer depth h = −32 m. Below z < h the
thermocline is stably stratified at a rate of 0.05 K m−1. In order to examine scalar
mixing a small heat flux Q∗ = 5 × 10−7 K m s−1 is imposed at the surface. In all
simulations the Coriolis parameter f = 10−4 s−1. For the wind speed Ua = 15 m s−1

and assuming a density ratio ρo/ρa = 103 the atmosphere and ocean friction velocities
are u∗a = 0.591 m s−1 and u∗o = 0.0187 m s−1, respectively. The computational
domain (Lx, Ly, Lz) = (300, 300, −110) m is discretized with (300, 300, 128) gridpoints
(horizontal grid spacing ∆x = ∆y = 1.0 m). At the higher wind speed Ua = 30 m s−1,
a larger domain is used, (750, 750, −170) m, and is discretized with (500, 500, 128)
gridpoints (∆x = ∆y = 1.5 m). In this case the rate of stable stratification below
the initial thermocline depth is doubled 0.10 K m−1. Vertical meshes are generated
using constant algebraic stretching, i.e. with the ratio of any two vertical cells K =
∆zk+1/∆zk held constant. Stretching factors K < 1.012 yield flexible meshes capable
of concentrating the grid near the surface, but extending deep into the water. This
small value of K ensures that the mesh varies smoothly in the vertical direction.
Thus the ratio of horizontal and vertical spacing at the first z-level below the water
surface ∆x/∆z1 < 2.6. LES with this horizontal–vertical mesh ratio yields good
simulations of atmospheric convection (Moeng & Wyngaard 1989) and this mesh
ratio is well within the acceptable limits suggested by Scotti, Meneveau & Lilly
(1993). The influence of the subgrid-scale (SGS) motions is not significant as the SGS
fluxes are small over the entire computational domain, especially in simulations with
wave breaking. To arrive at a (statistical) steady state all simulations are run for
more than 30 large eddy turnover times Te = −h/u∗o or more than 25 physical hours
requiring [90 000−240 000] computational steps. As is customary practice, statistics
are generated by combining spatial x−y and temporal averaging; these averages are
indicated by 〈 〉. The mixed-layer depth is a function of time and also varies with
spatial position. At any t , we deduce an estimate of the mean mixed-layer depth h

using the maximum scalar gradient method described by Sullivan et al. (1998). This
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method is able to track the average movement of the turbulent layer and provides a
good estimate of the average entrainment velocity across the thermocline.

With wave effects the vertical profile of the Stokes drift is numerically evaluated
for a full wave spectrum as described in § 2.1. Based on the Stokes profile at a depth

z = 1 m, the turbulent Langmuir number Lat =
√

u∗o/uSt ≈ 0.3, and thus wave–
current interactions are important (McWilliams et al. 1997) in the chosen wind-speed
regime. The partitioning of the atmospheric momentum flux (2.5) into resolved and
subgrid breaker pieces depends on the grid resolution, wind speed and the breaker
PDF as discussed in §§ 3.3 and 4.2. For the grid resolution used, winds Ua = 15 m s−1,
and near equilibrium winds and waves gt ≈ 3.9, the ratio of the subgrid-scale uniform
stress to the total wind stress |τττo|/|τττa| ≈ 0.1. For higher wind speeds and larger values
of gt this ratio rapidly decreases to values less than 1%. Hence for the majority of
the simulations intermittent breaking is responsible for transmitting 90–100% of the
atmospheric stress to the water column and is the main mechanism for mean current
generation in the simulations. Below a depth z < −4 m the SGS contribution to the
momentum fluxes is less than 2% of the surface stress u2

∗o.

6. Results
The observed response of the OBL to the vortex force and wave breaking suggests

a connection between the surface wave conditions and vertical mixing in the OBL. We
find that the mean currents, turbulence variances (and TKE), turbulence dissipation,
scalar and momentum fluxes and entrainment at the thermocline all exhibit varying
degrees of sensitivity to the surface wave field. In general, simulations with explicit
wave influences differ from their counterparts driven by constant stress and no wave
effects. An important parameter is the PDF of breaking and its dependence on wave
state. For a given wind speed P (c) shifts towards larger-scale breaking as wave age
cp/u∗a decreases from 30 to 19. At the same time the number of breakers in the
computational domain decreases, consistent with the need to obey momentum and
energy conservation. The shift towards larger-scale breaking promotes interactions
between breaking turbulence and vortex force.

6.1. Mean current and momentum-flux profiles

In order to examine the momentum balance in the presence of waves we form the
ensemble-average integral momentum budget from the LES equations (4.1a). For the
conditions of the simulations, i.e. horizontally homogeneous flow, no flow as z → −∞,
aligned surface winds and waves with uuuSt = [uSt (z), 0, 0], the momentum budget for
statistically steady flow is

〈uw〉 + 〈τ13〉 −
∫ z

−∞
〈A〉 dz = f

∫ z

−∞
〈v〉 dz (6.1a)

〈v w〉 + 〈τ23〉 = −f

∫ z

−∞
〈u + uSt〉 dz, (6.1b)

where 〈 〉 denotes an ensemble average. This expression illustrates how resolved
and subgrid-scale turbulence fluxes, waves and mean currents contribute to the bulk
momentum balance. It contains explicit wave influences in the form of Ekman–Stokes
transport

∫
uStdz (McWilliams et al. 1997) and a new contribution from vertically

distributed breakers. Note in the y-budget equation the locally varying vortex force
uStω3, which plays an important role in generating convergence lines, does not appear
since 〈uStω3〉 = 0. The vertical profile of average breaker momentum flux −

∫
〈A〉dz
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Figure 4. The depth variation of the ensemble-average breaker momentum flux for varying
wave age and wind speed: (Ua, cp/u∗a) =(15 m s−1, 30), •; (15 m s−1, 23), ◦; (15 m s−1, 19),

�; (30 m s−1, 30), �. The breaker momentum flux is normalized by the water friction velocity
u2

∗o.

obtained from the simulations is shown in figure 4. As expected its surface value varies
with wave age and wind speed, as discussed in § 3. Intermittent breakers account for
more than 90% of the total momentum transport to the underlying currents for the
forcing conditions and grid resolution of the simulations. The breaker momentum
flux decays rapidly with z because of the exponential decay of the vertical shape
function Z (Sullivan et al. 2004, (3.3d)) and the small value of the depth penetration
constant χ = 0.2; for example the breaker momentum flux with Ua = 15 m s−1 and
gt = 3.9 becomes negligible below z ≈ −1 m and at higher winds, where the PDF
includes larger breakers, extends down to about z ≈ −5 m. Notice for intermediate
wave age the breaker contribution at 15 m s−1 moves towards the variation at 30 m s−1

consistent with the PDF variations shown in figure 1.
In order to compare fairly average currents from different simulations, which have

slightly different integration periods, the mean currents are corrected for the presence
of inertial oscillations. Given the Coriolis parameter, the amplitude and phase of the
inertial oscillation is determined by a least-squares curve-fitting procedure applied
over the entire time period of the simulations (see Lin et al. 1996). The deduced low-
frequency inertial oscillation is then subtracted from each current component. Vertical
profiles of the mean currents, shown in figure 5, illustrate the impact of the various
wave processes under conditions approaching a fully-developed sea. The most striking
feature of the results is a clear grouping based on the presence or absence of Stokes
drift. For wind–wave equilibrium conditions, breaking does not significantly modify
the mean direction and magnitude of the average currents. This is an interesting result
given the radical difference in the level of intermittent forcing between simulations
with and without breaking. We emphasize that in cases (B1, B1 + St) mean currents
are generated solely by spatially distributed random impulses near the water surface,
while in cases (U, U + St) a conventional uniform surface stress boundary condition
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Figure 5. The sum of the mean current and Stokes drift profiles for simulations with: no
wave effects, dash-dot line; Stokes drift only, �; breaking only, solid line; Stokes drift plus
breaking, •. The inset shows just the Eulerian mean current profile 〈u〉/u∗o for simulations
with Stokes drift only (�) and Stokes drift plus breaking (•). The winds and waves are near
full equilibrium with (cp/u∗a, gt ) = (30, 3.9).

is applied at z = 0. Under the assumption that breaking is the main path to current
generation, these results imply the cumulative effect of intermittent breaking is to
generate mean currents typical of an OBL forced by constant surface stress. Closer
inspection of the results shows the mean surface current obtained with breaking only
(no vortex force) weakens as wave age decreases. As cp/u∗a diminishes the probability
of large-scale breaking increases, which induces a substantial increase in near-surface
eddy viscosity νt accompanied by a reduction in the current shear. A similar effect
was also observed in our idealized DNS (Sullivan et al. 2004) but is weaker in the
present LES which includes a spectrum of breaking waves.

The presence of Stokes drift, however, has a dramatic impact on the mean currents
and plays a dominant role even as the level of breaking increases. The present results
are at least qualitatively consistent with the previous LES of McWilliams et al. (1997),
who applied a Stokes profile based on a monochromatic wave field and drove the
OBL with uniform surface stress. Potent Langmuir cells, generated by the wave
field, promote efficient vertical transport leading to well-mixed (u, v)-current profiles
throughout the bulk of the mixed layer with a noticeable turn to the right as z → h.
Langmuir cells also indirectly impact entrainment of cool water as they enhance the
current shear in the region z ≈ h.

The coherent structures generated by the vortex force increase the efficiency of the
momentum transport as observed in figure 6. For a given z, the total turbulent fluxes
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Figure 6. Vertical profiles of the mean total (resolved plus SGS) vertical momentum flux
〈uuu′w〉 for simulations with: no wave effects, dash-dot line; Stokes drift only, �; breaking only,
solid line; Stokes drift plus breaking, •.

〈u′w〉 and 〈v′w〉 are enhanced compared to the situation with no wave influences
and this enhancement is only slightly modified by the presence of significant wave
breaking for fully developed waves. The profile (figure 7) of mean eddy viscosity for
momentum Km, deduced from

〈uuu′w〉 = −Km d〈uuu〉/dz , (6.2)

illustrates the increased mixing efficiency generated by Langmuir cells. The
enhancement compared to cases with no vortex force is primarily a reflection of
the decrease in mean current shear shown in figure 5. The sign change of Km in
the interval −0.2 < z/|h| < 0 is a consequence of subtle slope changes in the 〈v〉
and 〈u〉 currents near z/|h| ≈ (−0.2, −0.05), respectively. Vertical oscillations in the
Km profile in the case with vortex force appear to be smoothed by the presence of
stochastic breaking. The negative values of the mixing coefficient are evidence of
non-local vertical transport and clearly show the inadequacy of a mean eddy viscosity
assumption in the presence of Langmuir cells.

6.2. Variance, TKE and dissipation profiles

Inspection of the TKE and turbulence variance profiles (figures 8 and 9) highlights
the competition and tradeoffs between uniform and stochastic forcing, and Stokes
drift at wind speed Ua = 15 m s−1. Similar to the mean current profiles, the results
for the resolved variances can be grouped depending on the presence or absence of
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Figure 7. Profile of eddy viscosity for momentum Km = −〈uuu′w〉 · d〈uuu〉/dz / |d〈uuu〉/dz|2 for
simulations with: no wave effects, dash-dot line; Stokes drift only, �; breaking only, solid line;
Stokes drift plus breaking, •.

vortex force. First, comparing flows driven by breaking or uniform stress (no Stokes
drift), we notice that the influence of breaking is confined to the near-surface waters
−0.1 < z/|h| < 0, a depth of 5 m or less that is expected based on the vertical
distribution of breaker impulses (figure 4). In the LES, stochastic breaking lowers the
u-variance similarly to the trend observed in our DNS, which had relatively large
breakers of a single scale. The biggest impact of the wave field on the turbulence
results from the vortex force. The near-surface reduction in the u-variance, strong
enhancement of the v-variance and the significant increase in the w-variance below
the water surface observed here are also present in the LES of McWilliams et al.
(1997) obtained with a monochromatic wavefield,. These changes in the turbulence
variances are attributable to the presence of organized Langmuir cells which persist
in the presence of breaking. Closer inspection of runs B1 + St and U + St indicates a
reduction in the v-variance in the presence of breaking near the water surface. This
trend becomes more apparent as the dominant scale of breaking increases, i.e. for
less developed waves cp/u∗a < 30 (results not shown). The reduction in the lateral
variance implies less coherent Langmuir cells; this finding is supported by the flow
visualization presented later. The modulation of the strength and organization of
Langmuir cells by large-scale breaking waves in the LES is an interesting result as
previous LES show strong intensification and reduction in scale of the Langmuir cells
as the LES grid resolution is refined (McWilliams et al. 1997).

Breaking and the vortex force elevate the TKE near the water surface compared to
simulations without wave influences; the total (resolved plus SGS) energy normalized
by u2

∗o increases from 6 to more than 20 with a large percentage of the increase due to
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Figure 8. TKE profiles close to the water surface −0.2 < z/|h| < 0 for simulations with-no
wave effects, dash-dot line; Stokes drift only, �; breaking only, solid line; Stokes drift
plus breaking, •. The wave age is cp/u∗a = 30. Panel (a) total (resolved plus SGS) and
(b) subgrid-scale energy.
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Figure 9. Variance profiles of the resolved velocity components for simulations with: no wave
effects, dash-dot line; Stokes drift only, �; breaking only, solid line; Stokes drift plus breaking
for winds and waves near equilibrium, •.
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Figure 10. Profile of normalized dissipation ε|h|/u3
∗o for simulations with: no wave effects,

dash-dot line; Stokes drift only, �; breaking only, solid line; Stokes drift plus breaking, •;
fully-developed wind waves. Dissipation is estimated from the subgrid-scale parameterization
ε = Cεe

3/2/∆ with Cε = 0.93. The heavy black line is the rough wall layer scaling ε = u3
∗o/0.4|z|.

The inset is a blow-up near the surface.

the enhancement of the SGS energy by breaking. Note in the region 0 > z/|h| > −0.05
breaking is overwhelmingly the dominant source of SGS energy. Below a depth
z/|h| < −0.1 the simulations again segregate into two families based on the presence
or absence of the vortex force as Langmuir cells are depth filling and enhance the
TKE over the bulk of the mixed layer.

Turbulent dissipation is a metric, produced by observational datasets, often used
to infer the impact of waves on ocean currents, e.g. Terray et al. (1996), Drennan
et al. (1996), Terray, Drennan & Donelan (1999). These field measurements report
elevated dissipation by 1–2 orders of magnitude compared to (atmospheric) wall
scaling ε ∼ 1/z with the magnitude dependent on wave state. This increase is most
often attributed to breaking waves. Previous LES with the vortex force driven by
uniform stress also find enhanced dissipation near the water surface, and thus it
is interesting to examine the relative contributions of Langmuir cells and breaking
waves to dissipation in the present solutions. The turbulent dissipation from cases
with uniform stress and different combinations of vortex force and wave breaking
are compared in figures 10 and 11. Here we use the traditional SGS parameterization
ε = Cεe

3/2/∆ (Moeng 1984) as a measure of net dissipation in our simulations. The
LES driven by uniform stress and no wave effects reasonably reproduces the rough
wall estimate ε = u3

∗o/κ |z|, where κ = 0.4.
In our modeling, breaker work is strongly intermittent in space and time with

its magnitude dependent on the phase speed c of any particular breaker. As a
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Figure 11. Near-surface normalized dissipation ερolb/Ea for simulations with breaking and
Stokes drift for varying wave age; cp/u∗a = 30, dash-dot line; cp/u∗a = 23, dashed line; and
cp/u∗a = 19, long-dashed line. The measurements of Terray et al. (1996) and Drennan et al.

(1996) are indicated by • and �, respectively. In these data the length scale lb = c2
p/g, where

cp is the peak in the measured wave height spectrum for wind waves. In the LES, lb = c2
E/g,

where cE is the phase speed of the peak in the breaker energy flux spectrum.

consequence of (4.1b), all SGS variables including ε inherit these dependencies and
considerable averaging is required to obtain reliable dissipation estimates. Below a
depth z/|h| < −0.2 the dissipation profiles for all cases are similar in shape, and
the results with the vortex force are only modestly elevated compared to cases
with no Stokes drift. However, near the water surface the magnitude and vertical
distribution of dissipation depend strongly on breaking and the vortex force. With
breaking and Stokes drift the dissipation close to the water surface is more than
(80, 2) times larger than values obtained from simulations with no wave effects and
Stokes drift only, respectively. Enhanced dissipation is primarily a consequence of
breaking, which is expected based on the high values of TKE shown in figure 8.
Figure 11 compares dissipation estimates from LES with varying wave age in the
non-dimensional variables (z/lb) and (εlbρo/Ea) proposed by Terray et al. (1996) and
Drennan et al. (1996), where lb is a characteristic length scale of the wave field. In the
field observations ε is obtained from velocity spectra in the inertial subrange, and the
majority of the measurements were obtained under developing seas (wave age < 8)
with significant wave heights Hs < 0.5 m. The data of Drennan et al. (1996) are more
developed cp/u∗a < 23 with Hs ∼ 0.88−2 m. In terms of significant wave height, all
the data are well below the estimate for fully developed waves discussed in § 2.1 (Alves
et al. 2003). Drennan et al. (1996) note the choice of length scale in the dissipation
scaling law is not unique; they plot their results using lb = Hs and lb = c2

p/g, where
cp is the peak in the wave-height spectrum excluding swell. The statistical variations
in the observations are large, the range of conditions is small and an optimum length
scale is not obvious from the data. These uncertainties make a direct comparison with
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the present LES results obtained at higher wind speeds difficult. However, to illustrate
the trends we show the LES results normalized using a length scale lb = c2

E/g, where
cE is the phase speed of the peak in the breaker energy-flux spectrum (see figure 3).
The qualitative comparison between the observations and the LES with breakers and
Stokes drift is good. As the wave age decreases from wind–wave equilibrium the LES
results tend to limiting values, independent of cp/u∗a , in agreement with the Terray
et al. (1996) scaling arguments. A wider range of observational datasets is needed to
test the LES predictions.

6.3. Flow structures

The statistical moments discussed in the previous sections are evidence of the influence
of surface waves on the bulk properties of the mixed layer. Extensive visualization of
the various flows is next discussed to elucidate further the spatial and temporal effects
of vortex force and breaking on mixed-layer dynamics. Here the vertical velocity field
is used as a marker to identify coherent structures in the flow. Figure 12 compares
w-contours near the water surface for flows with different combinations of uniform
stress or breaking and vortex force. The baseline simulation with no breaking and
no vortex force shows that randomly distributed turbulent eddies dominate the near-
surface motions, as is typical of a flat plate boundary layer. Intermittent breaking alone
modifies this pattern in a manner consistent with our previous DNS: each breaker
generates a forward and downward impulse and a weaker positive return flow. The
breaker flow structures scale with the phase speed c and the number of events is
consistent with the PDF of breaking. The relatively benign patterns in figures 12(a)
and (c) are strongly modulated by the vortex force. Streamwise elongated patterns
appear in figures 12(b) and (d) and the downwelling and upwelling lines reflect the
formation of Langmuir cells. Closer inspection of the patterns reveals streamwise
mergers at forward-looking Y-junctions, a consequence of the merger of positive and
negative signed streamwise vortices from neighboring cells. The overall strength of the
downwelling and upwelling lines is consistent with the high levels of vertical-velocity
variance shown in figure 9. The life cycles of Langmuir cells for mixed layers driven
by uniform stress are fully discussed by McWilliams et al. (1997).

There is a subtle hint in the images of figure 12 that intermittent breaking weakens
the formation of Langmuir cells generated under uniform wind stress. In order to
expose this breaker–vortex-force interaction we show w-contours from four different
simulations with the same Stokes drift field at two different z-levels (figures 13 and
14). These images illustrate an impact of breaking on Langmuir-cell formation near
the water surface (0 > z > −2 m) and also surprisingly deeper in the water column
(z ∼ −13 m). Overall, as the level of intermittent forcing increases (or equivalently as
the wave age decreases) the spatial organization of the Langmuir pattern decreases;
the lateral distance between downwelling lines becomes wider; and the lines shorten in
length in the streamwise direction. These trends are especially apparent if we compare
figure 13(a) and figure 13(d), which are simulations driven by uniform stress and by
large intermittent breakers, respectively. Also in the simulation with the youngest
waves (wave age cp/u∗a ∼ 19) the downwelling is strongly focused at Y-junctions.
The spatial structure and sparsity of downwelling lines suggest that intermittent
breaking alters the formation of Langmuir cells compared to the uniform stress case.
The near-surface w-patterns are consistent with the changes in turbulent variances
discussed previously.

The flow visualization in figure 14 shows unexpected flow patterns for simulations
with and without breaking (and Stokes drift) well below the surface layer, z ∼ −13 m.
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Figure 12. Snapshot of vertical velocity w at z = −1.14 m for different combinations of
Stokes drift and wave breaking for fully developed waves cp/u∗a = 30: (a) no wave effects and
uniform stress, (b) uniform stress plus Stokes drift, (c) breaking waves and no Stokes drift,
and (d) breaking waves plus Stokes drift. The grey-scale bar shown at the top of the figure is
in units of metres per second.

For flows driven by uniform stress or weak intermittent breaking (figure 14a and 14b)
broad horizontal streaks appear, and the streaks are rotated to the right of the surface
wind by Coriolis effects (n.b., mean current profiles in figure 5). These patterns are
signatures of depth-filling Langmuir circulations and are observed in all LES of the
OBL driven by uniform stress and vortex force (e.g. Skyllingstad & Denbo 1995;
McWilliams et al. 1997; Noh et al. 2004). However, this pattern remarkably changes
when the surface forcing shifts to larger and more intermittent breaking. The streaky
pattern is less organized as coherent round ‘spots or jets’ of concentrated negative w

appear.

6.4. Action of vortex force on breaker vorticity

The intriguing interactions between breaking and vortex force shown in figures 13 and
14, supported by other visualization, motivated a search for the source of downwelling
jets in LES. Numerous simulations with different PDFs of breaking show that these
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Figure 13. Contours of downwelling velocity w � −0.01 m s−1 at z = −0.38 m for cases with
Stokes drift and varying wave age: (a) uniform stress no breaking, (b) fully developed waves
cp/u∗a = 30, (c) cp/u∗a = 23, and (d) cp/u∗a = 19.

downwelling jets are robust features. For a given value of Stokes drift (or wind
speed and wave age) they appear most often when the forcing is dominated by large
intermittent breakers. Results with a PDF that emphasizes large-scale breaking are
given in Sullivan et al. (2005).

Our present interpretation for the development of downwelling jets is based on a
delicate coupling of breaker vorticity and the so-called CL2 instability mechanism
(Leibovich 1983, p. 402) sketched in figure 15. CL2 is a potent pathway to generating
Langmuir circulations that depends on positive feedback between the vortex force and
local perturbations of horizontal current. For example, Nepf et al. (1995) speculate
that wave breaking in their channel flow may provide ‘seed vorticity’ for the initiation
of the CL2 mechanism. However, their results are made ambiguous by the presence
of other transverse structures in their wavy flow, and the large influence of the
bottom boundary layer in the shallow channel with surface wavelengths comparable
to, or even larger than, the channel depth. Earlier, Csanady (1994) had speculated
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Figure 14. Vertical velocity contours at z = −13.38 m for the same flows as in figure 13.
Note the appearance of the coherent round downwelling jets in (c) and (d). The grey-scale bar
shown at the top of the figure is in units of metres per second.

that surface stress anomalies of finite extent, due to either wind gusts or breaking
waves, might lead to a ‘forced CL2 mechanism’, with Stokes drift tilting the lines of
vertical vorticity at the edges of the anomaly, without the need for the feedback of
the CL2 mechanism. The idealized sequence of CL2 events (see figure 15) assumes a
streamwise current fluctuation u′ of finite y-extent and a Stokes drift uSt and requires
no coherent surface-wave structure. First, the current anomaly generates vertical
vorticity of opposite signs that lead to opposing vortex forces uStω3 ŷyy that decay with
depth providing the torque to generate counter-rotating vortices. Then the action of
the vortex forces directed inward towards the centerline of the current fluctuation
reinforces the perturbation and promotes the instability. The flow convergence at the
surface leads to downwelling. In the original description of CL2 Leibovich (1983,
p. 399) states ‘Vorticity in the water body may arise from currents whose origins
are unspecified, or . . . by an applied wind stress . . .’. We find the intensity, scale
and proximity of the vorticity generated by breaking are important variables to
be considered in CL2. These dependences might be anticipated since figure 15 is an
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Figure 15. Sketch illustrating the CL2 instability mechanism for the generation of Langmuir
circulations at the water surface, adapted from Leibovich (1983). The current perturbation
u(y, z) generates vertical vorticity ωẑzz that is amplified by the vortex force Vf = uStωŷyy that leads
to downwelling at a convergence line. Breaking waves are a source of the initial streamwise
current perturbation and vertical vorticity.

idealization of a single isolated perturbation, and thus this picture cannot be expected
to predict new dynamics arising from the coupling of nearby strong CL2 events.

To illustrate the importance of background vorticity on Langmuir dynamics we
compare vertical-vorticity fields from simulations driven by uniform stress and by
intermittent breaking in figure 16. In the former case the vorticity is uniformly
distributed in space, relatively weak and of small scale. In contrast, in the simulation
with breaking the vertical vorticity is stronger in magnitude and contains a spectrum
of large and small scales. An important point to notice is that each breaker generates
both positive and negative vertical vorticity in close proximity that ideally interacts
with the Stokes drift in the vortex force to generate strong local lateral convergence.
Inspection of the contours and animations shows that as time advances the initial
vertical vorticity field from each breaker evolves into multiple pairs of plus-minus
signed vorticity, all of which merge at a vigorous forward looking Y-junction; the
magnitude of downwelling at a Y-junction with breaking exceeds values obtained
under uniform stress. The dynamics in figure 16 gives rise to the different patterns of
convergence lines shown in figure 13.

Previous studies have found that breaker turbulence can persist for multiple wave
periods (Melville et al. 2002; Sullivan et al. 2004) despite the limited lifespan of
active breaking, a time scale of the order of the wave period T = 2πc/g. Thus it
is interesting to examine the interaction between breaking turbulence and the vortex
force for t > T . The post-breaking life cycle of vertical vorticity, vertical velocity
and streamwise current for a typical breaking event extracted from a simulation
is displayed in figures 17–19. The breaker scales are λ ∼ 20 m, c ∼ 5.6 m s−1 and
T ∼ 3.6 s. The time and space evolution of the flowfields is qualitatively similar to
the flow pattern sketched in figure 15 and illustrates that large breaking events seed
the CL2 instability. However, complex dynamics can occur at merger points. At the
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Figure 16. Snapshot of vertical vorticity ωωω ··· ẑzz at z = −1.14 m for two simulations with Stokes
drift driven by: (a) uniform stress and (b) breaking with wave age cp/u∗a = 19. Note the paired
plus and minus signed vertical vorticity that occurs at the lateral (y) ends of each breaker. The
colour bar shown at the top of the figure is in units of per second.

initial time, the residual of a breaking event is a pair of vertically aligned vortices
with a y-separation approximately equal to λ (we refer to these as the primary
vortices). Each of the primary vortices amplifies and migrates towards a common
centerline as a result of the vortex force. With increasing t , current perturbations
and vortices internal to the primary pair develop as a result of CL2. This appears
as an enhancement of the u-current at the internal edge of each primary vortex (see
figure 17b,d). The new four vortex system grows in strength, propagates forward and
heads to an inevitable collision at a forward location. However, notice the sign of the
internal vortices is such that they collaborate to generate strong backflow (negative u)
along the centerline of the vortex system retarding the forward motion of the breaker
impulse. The flow response is vigorous downward motion. At late time, after about
80 s or 22 wave periods, the vortices all merge ending the event.

The response of the vertical velocity field at z = −1.14 m shown in figure 18 is
consistent with the active movement of the vortices. Immediately after the breaking
event w is laterally (y) distributed in front of and behind the breaker, a response to
the forward impulse of breaking. As the CL2 instability grows a pair of downwelling
lines develop just inside the primary outer vortices. The downwelling intensifies until
at late time the lines join (intense Y-junctions are readily apparent in figure 13d).
Upstream of the downwelling merger the u-currents slow and change sign as if in
response to a stagnation point.

Deeper in the water column, z ∼ −13 m, a round downwelling jet forms slightly
forward and to the right of the surface breaking event. At this depth the jet first
appears about 80–100 s after the breaking event. Its appearance is consistent with a
travel time of O(100) s and a vertical velocity w ∼ −0.1 m s−1. Thus we are lead to
conclude that the downwelling jets in figure 19 (and those in figure 14d) originate
at the water surface and result from interactions between CL2 type instabilities. We
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Figure 17. Temporal evolution of breaker flowfields under the action of the vortex force at
z = −1.14 m for the simulation with wave age cp/u∗a = 19. The resolved vertical vorticity ωωω · ẑzz
is shown in the colour images and the resolved streamwise current u as solid contour lines.
The colour bar at the top of the figure is in units of per second and the contour lines are
evenly spaced in the range [0, 0.3] m s−1. Relative to panel (a) the elapsed time in seconds is
[18,(a)], [37,(b)], [44,(d)], [55,(e)], [80,(f )]. Note the expanded y-scale beginning with panel (c).

find that the scale and intensity of the downwelling jets varies as expected with the
breaker phase speed c. With intermittent large-scale breaking the downwelling jets
penetrate well below the surface layer and alter the structure and mixing of the OBL.

The flow patterns displayed in figures 17–19 are typical of strong breaking events.
Breaking supplies seed vertical vorticity to start the CL2 instability, but the flow
can rapidly degenerate into multiple pairs of vortices each acting under the influence
of the vortex force. The forward propagating vortex system merges and produces
downwelling. Thus surface interactions between breaker vorticity and vortex force
lead to the formation of a new coherent structure below the surface layer. When the
vertical-vorticity seeds of the CL2 instability are relatively weak, streamwise oriented
vortices develop that evolve into classic Langmuir circulations. However, if the initial
vorticity is strong, downwelling jets also develop and the surface Langmuir pattern
is more intermittent. Our results show that turbulence from breaking and the CL2
mechanism play a role in an OBL with fully developed turbulence, a wave spectrum,
and realistic currents.
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Figure 18. Temporal evolution of resolved vertical velocity w and streamwise current u for
the same time periods and spatial locations as in figure 17. The colour bar at the top of the
figure is in units of metres per second.

The vertical velocity skewness 〈w3〉/〈w2〉3/2 is a bulk statistical measure often used
to detect the presence of coherent structures in a boundary-layer flow. For example,
Moeng & Rotunno (1990) find that a bias in vertical velocity skewness indicates the
presence of thermal plumes in a convective flow. Figure 20 shows vertical velocity
skewness from our simulations with different combinations of breaking and vortex
force. In all cases with intermittent breaking and vortex force the skewness is more
negative than the comparable case driven by uniform stress and Stokes drift. In
the absence of the vortex force the skewness is only slightly negative. The large
negative skewness in simulation B3+St reflects the presence of vigorous downwelling
jets discussed above. Notice in this simulation, the skewness is persistently negative
well below the surface layer indicating that once the downwelling jets develop at
the surface they persist throughout the mixed layer. This is additional evidence
that strong intermittent breaking and the vortex force can act synergistically to
form a coherent structure roughly analogous to a thermal plume. The bias towards
negative skewness, induced by surface waves, appears to be robust across wind speed
as a simulation at Ua = 30 m s−1 shows a similar trend, with further discussion
in § 7.
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Figure 19. Time history of vertical velocity w at z = −13.38 m for the same flow conditions
as in figures 17 and 18. Relative to figure 17(a) the elapsed time in seconds is [44,(d)], [55,(e)],
[80,(f )], [90,(g)], [117,(h)], [143,(i)]. The colour bar at the top of the figure is in units of metres
per second. At this depth the downwelling jet forms at nearly the same horizontal location as
the breaking event in figure 17, but begins to appear 80–90 s later.

6.5. Scalar statistics and mixed-layer depth

The importance of surface waves to OBL dynamics and scalar transport is
traditionally assumed to be confined to a depth on the order of the wave height.
However, these LES results clearly indicate that surface waves alter mixed-layer
dynamics over a greater depth O(|h|), mainly due to the vortex force. Scalar transport
is important in the mixed layer, especially so for OBLs under high wind conditions
since entrainment cooling can alter the development of tropical cyclones (e.g. Emanuel
1999, 2004). This raises the important question of whether surface waves play an
expanded role in scalar mixing.

Figure 21 illustrates the influence of surface waves on the bulk mixed layer
temperature and the structure of the thermocline inversion. Averaged over identical
periods, the mixed-layer temperature is cooler in the presence of vortex force due
to more efficient entrainment at the thermocline. Compared to the cases driven
by uniform stress or breaking only the simulations with vortex force also exhibit
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Figure 20. Profiles of vertical velocity skewness 〈w3〉/〈w2〉3/2: no wave effects dash-dot line;
breaking-only wave age cp/u∗a = 30, solid line; Stokes drift only, �; Stokes drift plus breaking
with wave age cp/u∗a = 30, •; Stokes drift plus breaking with wave age cp/u∗a = 23, ◦; Stokes
drift plus breaking with wave age cp/u∗a = 19, �; and Stokes drift plus breaking with wave

age cp/u∗a = 30 for Ua = 30 m s−1, �.
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Figure 21. Profiles of normalized temperature for simulations: no wave effects, dash-dot line;
breaking-only wave age cp/u∗a = 30, solid line; Stokes drift only, �; and, Stokes drift plus
breaking with wave age cp/u∗a = 19, �. The mixed-layer depth and temperature are normalized
by the initial value hi = −32.4 m and the reference temperature θr = 283.5 K, respectively.
The time averaging is over 10 000 s starting at t = 40 000 s for each simulation. For reference,
the initial mixed-layer sounding is shown as a dotted line. Notice how the temperature profiles
from all simulations relax back to the initial sounding for z/|hi | � −1.
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Figure 22. Profiles of vertical (total) scalar flux normalized by the surface value Q∗ for
simulations: no wave effects, dash-dot line; breaking only wave age cp/u∗a = 30, solid line;
Stokes drift only, �; Stokes drift plus breaking with wave age cp/u∗a = 30, •; Stokes drift
plus breaking with wave age cp/u∗a = 23, ◦; and Stokes drift plus breaking with wave age
cp/u∗a = 19, �.

sharper temperature gradients in the entrainment zone. In these simulations vigorous
turbulence generated by the combined action of Langmuir circulations and breaking
overshoots the mean entrainment height leading to a stiffer inversion; this is analogous
to entrainment dynamics in the daytime convective atmospheric boundary layer
(Sullivan et al. 1998). Thus our simulations show that surface waves can modulate
the structure of the OBL entrainment zone. This is further illustrated in figure 22
where we compare vertical profiles of total average scalar flux 〈wθ ′〉 for our suite
of simulations. Recall, the same small surface flux Q∗ is imposed in all simulations.
As expected for these neutrally stratified OBLs, scalar mixing is dominated by
entrainment dynamics. The increase in entrainment in the simulations with the vortex
force shows that surface waves do indeed enhance mixing in the OBL compared to a
baseline simulation with no Stokes drift. This is largely a consequence of depth-filling
Langmuir cells that promote mixing, but also because the Langmuir cells alter the
structure of the current profiles near the thermocline (Skyllingstad 2005), i.e. the
Langmuir cells alter the current shear near z ∼ h. The downwelling jets in simulation
B3 + St are also observed to play a critical role in setting the scalar mixing efficiency
of the OBL; the entrainment flux is largest in this simulation. The entrainment of
cooler water from below the thermocline can increase by almost a factor of 4 in
the simulations with both wave breaking and Stokes drift compared to the baseline
simulation with no wave effects. At the same time, surface waves enhance the scalar
variance as shown in figure 23. The Langmuir cells (and downwelling jets) generated
by surface waves alter the shape of the thermocline temperature profile and potentially
are powerful enough to excite internal gravity waves (Chini & Leibovich 2003). These
results are not impacted by the SGS model for scalar flux. For the simulations 〈wθ ′〉sgs
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Figure 23. Scalar variance profiles for simulations with: no wave effects, dash-dot line;
breaking only wave age cp/u∗a = 30, solid line; Stokes drift only, �; Stokes drift plus breaking
with wave age cp/u∗a = 30, •; Stokes drift plus breaking with wave age cp/u∗a = 23, ◦;
and Stokes drift plus breaking with wave age cp/u∗a = 19, �. The normalizing parameter
Θ∗ = Q∗/u∗o.

referenced to the maximum entrainment flux in figure 22 peaks at 15% at z/|h| ∼ −1
and over the bulk of the mixed layer −0.9 < z/|h| < 0 is less than 5%.

7. Wind speed dependence
The preceding LES results for a wind speed of 15 m s−1 clearly demonstrate that

OBL dynamics and mixing depend on the structure and state of the surface wave
field, through the wave height and breaker spectra. These spectra vary with Ua (and
for a fixed wind also with wave age cp/u∗a), so it is important to consider how
the results might change for lower and higher winds, and in situations of wind–wave
disequilibrium as the latter is the more probable state of winds and waves. Future LES
will more fully quantify these dependences, but we make some preliminary estimates
assuming the empirical formulas in §§ 2 and 3 hold, in particular that the Froude
scaling is valid for different Ua . Ideally for an LES posing we need both the Ua and
cp/u∗a dependence of the Stokes drift, the atmospheric momentum and energy fluxes
and the breaker spectrum. We are also interested in large values of Ua , where imagery
of the sea surface shows impressive breaking events, and OBL dynamics regulating
the sea-surface temperature are especially critical for tropical cyclone evolution.

First, the relative importance of Stokes forcing compared to wind stress depends

on the turbulent Langmuir number Lat =
√

u∗a/uSt (McWilliams et al. 1997) with the
importance of conservative wave–current interactions increasing with decreasing Lat .
Li, Garrett & Skyllingstad (2005) extensively explore the parameter space spanned
by buoyancy, shear and Stokes forcing using LES, and for typical oceanic conditions
find the OBL is in a regime dominated by Langmuir turbulence Lat ∼ 0.3, i.e.
wave–current interactions are important. To test this Lat scaling in the presence of
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Figure 24. The impact of varying Stokes drift on: (a) mean currents, (b) vertical velocity
skewness, (c) turbulence variances, and (d) scalar flux. The solid line in each figure is the
result using the wave equilibrium spectrum given by (2.1) and the dotted line is the result
for a fetch-limited wave-height spectrum given by Komen et al. (1994, p. 187) with wave age
cp/u∗a ∼ 19. The magnitude of the Stokes drift uSt for the fetch-limited spectrum is reduced
by about a factor of 2 compared to the equilibrium spectrum.

intermittent breaking waves an LES identical to B3 + St is performed but with a
reduced value of Stokes drift corresponding to growing seas with wave age cp/u∗a = 19
(case B3 + FSt in table 1). In this LES, the Stokes drift profile is computed from
the empirically determined fetch-limited wave spectrum given by Komen et al. (1994,
p. 187). This is a severe test of the solution robustness as uSt is reduced by more than
a factor of 2 in the upper part of the mixed layer when the wave age varies from 30
to 19; this change in wave age implies Lat increases by

√
2. A comparison of various

statistical moments from simulations B3 + St and B3 + FSt is given in figure 24.
The overall impression from these results is that changing the Stokes forcing by

a factor of 2 does not alter the basic qualitative behavior of the OBL. The shape
of the current profiles, enhanced spanwise variance and large entrainment flux are
evidence that wave–current interactions and breaker forcing are important to the
flow dynamics over a wide range of sea states. Flow visualization of the w-current
(not presented) clearly shows streamwise oriented Langmuir circulations and the
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formation of downwelling jets in simulation B3 + FSt similar to those in B3 + St .
The negative bias in the vertical velocity skewness in figure 24 reflects the presence
of these coherent structures. Although clearly not exhaustive, our solutions appear
reasonably robust to changes in Stokes forcing and further support the Lat scaling
proposed by McWilliams et al. (1997) and verified by Li et al. (2005) in the presence
of breaking waves.

To investigate the wind speed dependence further we next utilize the formula in § 2,
u∗a ∼

√
CdUa and uSt ∼ 1/fp or ∼ Ua . Therefore the turbulent Langmuir number has

a weak wind speed variation because of the drag dependence Lat ∼ C0.25
d . For Ua =

15 m s−1 and the Stokes velocity at z = 1 m, we estimate Lat = 0.3, which is
a regime where Stokes forcing is important (see also McWilliams et al. 1997; Li
et al. 2005). Doubling the wind speed to 30 m s−1 increases the drag coefficient
Cd = 2.3 × 10−3 and therefore Lat = 0.33. At even higher winds, Ua > 30 m s−1,
Cd is probably wind speed independent or even decreasing (Donelan et al. 2004),
which again implies Lat ∼ 0.3. Based on the above scaling we conclude for all winds
greater than 15 m s−1 the vortex force should remain significant relative to the wind
stress.

Estimating the high wind speed dependence of the breaker spectrum is far less
certain due to the sparsity of field data. In §§ 2 and 3 we use bulk momentum and
energy conservation arguments along with data from Terray et al. (1996), Melville &
Matusov (2002), Melville et al. (2002) in the wind speed range Ua ∼ 7−15 m s−1 to
build a breaker distribution with Ua and cp/u∗a dependences. We now assume these
scaling arguments hold at higher winds. The critical trends for the breaker distribution
are given in figures 1–3. The peak phase speeds (or scales) for momentum and energy
transfer (cτ , cE) from breaking move closer to the peak in the wave-height spectrum
with increasing wind speed and decreasing wave age (figure 3). An estimate for the
peak scale for breaker momentum can be obtained by noticing that the integrand of
(3.16) changes sign at a crossover point c ∼ gtu∗a . Using this as an estimate for cτ

yields

cτ /cp ≈ 2π ν gt u∗a/Ua or cτ /cp ≈ gt

√
Cd , (7.1)

which shows a slightly superlinear dependence of breaker momentum on wind
speed (contained in cp and the drag coefficient) and linear dependence on wave
age (contained in the Terray parameter).

Based on the above arguments the general conclusion is that with increasing Ua the
vortex force remains roughly constant and the importance of intermittent breaking
increases. Results from LES at Ua = 30 m s−1, outlined in § 5, support these scaling
arguments. The vertical velocity skewness in figure 20 at double the wind speed
has a local minimum near the surface and a broad region near the thermocline,
indicating the presence of coherent structures near z ∼ h. Flow visualization indicates
downwelling jets form at a wave age cp/u∗a ∼ 30 at this wind speed. (Recall that
at lower winds the downwelling jets were either quite weak or nonexistent for the
same value of cp/u∗a .) This is a direct consequence of the shift to larger-scale more-
intermittent breaking shown in the PDF P (c) of figure 1. Compared with a baseline
simulation with no wave effects, the entrainment of cool water at the thermocline
increases by at least 30% due to wave processes, and this is likely to be consequential
for the sea-surface temperature evolution.
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8. Final remarks
8.1. Conclusions

A large-eddy simulation model of the OBL is described that accounts for surface wave
effects through non-conservative breaking waves and phase-averaged conservative
wave–current interactions. The equations for the resolved flow components are the
Craik–Leibovich (CL) theory with crucial wave–current coupling through the vortex
force. These equations are further augmented by a sum of discrete momentum
impulses to model breaking. A broadband spectrum of waves, typical of measured
conditions, is used to compute the Stokes drift profile which appears in the vortex
force. The LES equations are closed using an eddy viscosity approach based on the
subgrid-scale turbulent kinetic energy. The prognostic subgrid-scale TKE equation
includes Stokes-drift production and breaker work terms that enhance subgrid-scale
energy near the water surface. In this LES the traditional method of forcing an
OBL by constant surface stress is replaced by a stochastic model that intermittently
supplies momentum and energy to the underlying currents. The aggregate effect of
breaking is a linear superposition of discrete events of varying scale with each event a
time-varying three-dimensional impulse. The breaker model obeys Froude scaling and
is designed to match laboratory and field observations. Matching the bulk momentum
and energy fluxes between the atmosphere and ocean determines constants in the PDF
of breaking, and the rate of breaking and its variation with wind speed and wave age
are critical components of the model.

LES results at moderate wind speed Ua = 15 m s−1 illustrate how surface waves
impact the dynamics and mixing in the OBL in important ways. Langmuir circulations
are induced by the phase-averaged wave–current interactions, primarily through the
vortex force. They are depth-filling; they increase the efficiency of vertical transport;
and they enhance entrainment at the base of the thermocline. In an OBL driven by
constant stress with a broad wave-height spectrum only small differences were found
from previous LES that used a single dominant wave component. For fully developed
waves the impact of intermittent breaking waves is mainly confined to the region
close to the water surface; they energize the surface layer, destroy traditional wall
layer scaling and enhance the turbulent dissipation.

Stochastically distributed breaking waves also disrupt the surface downwelling
patterns, the characteristic signatures of Langmuir circulations. As the breaking
becomes more intermittent and focused towards larger scales, the downwelling lines
shorten in length and become more widely separated in the lateral direction. When
downwelling lines join, they are sites of concentrated negative vertical velocity. For
a given wind speed, fully developed equilibrium waves break often at small scales,
while younger seas break more intermittently at larger scales closer to the peak
in the wave-height spectrum. This wave-age dependence has consequences for the
interaction between breaking and Langmuir circulations. Although the vortex force
and breaking are added linearly to the equations, they can couple in a surprising
way to generate a new coherent structure, a downwelling jet, which weakens but
coexists with traditional Langmuir cells (i.e. in the absence of breakers). The origins
of downwelling jets are surface breaking sites, and their formation is closely linked
to the strength and scale content of the near-surface vertical vorticity field and the
CL2 instability mechanism. Streamwise breaking and its associated strong vertical
vorticity interacts with the vortex force over multiple wave periods. Breaking seeds
the CL2 instability and generates strong lateral convergence at a location forward of
the initial breaking site. The onset of downwelling jets coincides with a shift toward
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larger-scale breaking, i.e. as the wind speed increases and/or the wave age decreases.
The jets are found to extend throughout the mixed layer and can significantly alter
the vertical velocity skewness. Wave processes are globally important as Langmuir
circulations and downwelling jets enhance the entrainment of cool water at the OBL
thermocline. In summary, OBLs are importantly different from their wall-bounded
shear-layer counterparts because of surface waves. These effects need to be accounted
for in bulk parameterizations of the OBL.

8.2. Discussion

There are several aspects of the LES predictions that invite further numerical
evaluation and experimental testing. First, we adopt the asymptotic CL model of
wave–current interactions with no feedback. Fully coupled current and wave fields
might introduce transverse inhomogeneity that can potentially alter the Stokes drift
and breaking distributions which are used in the present model. Work by Zhou
(1999) and Kawamura (2000) indicates that CL is a valid approximation but further
exploration is warranted. Next, the LES wave forcing and current response predictions
need to be tested in field conditions for a variety of wind speeds and wave states.
This has the advantage of validating the LES, but it can also help clarify the
PDF of breaking and its dependence on environmental conditions. The LES results
suggest wave processes are important at high winds, especially so for tropical cyclone
evolution through enhanced entrainment of cool water at the thermocline. This needs
to be checked with new instrumentation and focused field campaigns and additional
explorations of the LES parameter space. The present LES results are an impetus
to incorporate more fully wave influences in bulk models of the OBL such as the
K-profile parameterization (Large et al. 1995; McWilliams & Sullivan 2000; Smyth
et al. 2002; McWilliams & Huckle 2006).

Perhaps the greatest need is to improve the description of the breaking statistics as
a function of wind speed, wave age and wind–wave misalignment. The statistical
description of breaking used here is speculative, and may be criticized for its
incompleteness, but we believe that the significance of the new dynamics that is
introduced to OBL modeling by the explicit inclusion of both breaking and Langmuir
turbulence justifies the sometimes crude assumptions made here. With very recent
developments in both field measurements and modeling of surface waves and wave
breaking, we expect that one of the next developments will be to use the output
of wind–wave numerical models to describe the breaking statistics for the OBL, i.e.
the coupling of OBL and wind–wave numerical models. We believe that the present
results will provide guidance on addressing these developments.
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Appendix. LES code details
A.1. Numerical method with breakers

The base set of LES equations for the resolved fields, subgrid-scale energy and pressure
described in § 4 are solved using a mixed finite-difference pseudospectral scheme
with a third-order Runge-Kutta time stepping with a fixed Courant-Friedrich-Lewy
(CFL) number. Solution variables are staggered in the vertical direction: (u, v, θ, p)
are located at cell centers while (w, e) are positioned at cell faces. Periodic lateral
boundary conditions are assumed while a radiation boundary condition is imposed at
the lower boundary (z → −∞) of the computational domain (Klemp & Durran 1983).
The code is parallelized with the Message Passing Interface using vertical domain
decomposition. The elliptic Poisson equation for pressure is solved with a custom
built direct solver utilizing a parallel matrix transpose.

The simulation code is extensively modified to account for stochastic wave forcing.
Observations of breaking waves in the equilibrium wind–wave regime report that the
phase speed of detectable breakers varies from c ≈ 1 to c ≈ 14 m s−1 for wind speeds
7< Ua < 15 m s−1 (Melville & Matusov 2002). Based on the linear dispersion relation
the breaker length scale λ then ranges from 0.6 m to more than 100 m, while its period
T ranges from 0.6 s to more than 9 s. Capturing the breaker forcing adequately over
this wide scale range requires careful evaluation of the impulse Ai in our integration
scheme. From preliminary solutions we found that simply evaluating Ai(xxx, t) and then
inserting it into the right-hand side of our standard algorithm would completely miss
or generate only a partial impulse. Hence, as the current fields moved forward in
time they would either remain laminar or never become fully turbulent. The method
successfully employed advances the current fields from stage n to stage n + 1 in the
Runge-Kutta scheme using the rule,

un+1
i (xxx) = un

i (xxx) + ∆tη

(
ri(xxx) − ∂p

∂xi

(xxx) + A
∗
i (xxx, t)

)n

+ · · · , (A1)

where ∆t is the time step, ri denotes all other terms on the right-hand-side, of (4.1),
η is a weight associated with the time stepping, and the dots indicate prior substeps.

In (A1), A
∗
i is the average breaker impulse defined as a time and space integral of

the breaker function (3.11) averaged to the LES gridpoint (xxx, t). For example, in the
x-component of the current equations,

A
∗
1(xxx, t) =

1

∆V ∆t

t+∆t∫
t

z+∆z/2∫
z−∆z/2

y+∆y/2∫
y−∆y/2

x+∆x/2∫
x−∆x/2

A(α, β, δ, γ ) cosΘ dx dy dz dt , (A2)

where the averaging is over the small volume ∆V = ∆x ∆y ∆z and time increment
∆t , and Θ is the breakers horizontal orientation in the LES grid. The integrand
contains complex dependences on (xxx, t) because of the breaker functional forms
(3.11) and (3.12) and thus the integrals in (A2) are evaluated using a trapezoidal
rule on a fine mesh between LES gridpoints. The implementation evaluates (A2) at
every substep at each LES gridpoint (xxx, t) for all active breaking events. Tests of the
numerical implementation show that it conserves the total momentum from a breaker
irrespective of its time and space scale and hence even small scale breakers are ‘felt’
in the LES grid.

In our simulations the maximum allowable timestep ∆t is picked based on the
grid resolution, the maximum velocity in the computational domain and a fixed
CFL number. This method is adaptive at each timestep and is a robust scheme
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for determining an optimum timestep for a variety of flows. Simulation diagnostics
show breaking impacts the numerical stability of the code. Large breakers boost the
magnitude of the work term W in the SGS e-equation (4.1), which in turn locally
enhances the SGS eddy viscosity for momentum and scalars (νt , νh). To maintain
numerical stability a minimum timestep is chosen to satisfy a CFL constraint or a
viscous stability criterion based on the subgrid-scale eddy viscosities and grid spacing,
e.g. ∆t < ∆z2/2νh (Ferziger & Perić 2002), whichever is more stringent.

A.2. Algorithm outline

A synopsis of the algorithmic components of our OBL LES is the following:
(1) Select a wind speed Ua .

(a) Compute the available atmospheric momentum and energy using bulk
formulas (2.5) and (2.7).
(b) Integrate the wave spectrum (2.1) to generate a vertical profile of the Stokes
drift (2.4).
(c) Compute the breaker PDF and rate of breaker generation Ṅ using (3.16) and
(3.17), respectively.
(d) Based on the LES grid resolution, partition the atmospheric momentum and
energy fluxes into resolved and subgrid breakers as in (4.6) and (4.7).

(2) Integrate the LES equations (4.1) forward in time. Breakers obey the following
rules at each full Runge–Kutta time step:
(a) Draw breaker speeds from the PDF and use the linear dispersion relation to
establish other event properties.
(b) Candidate breakers are sorted by size so that the largest breakers are added
to the water surface first. Small breakers fill in the remaining empty voids.
(c) Breaking events are initiated at non-overlapping surface sites drawn from a
uniform random distribution.
(d) Generate the four-dimensional breaker impulse functions for each c and
average the breaker impulses to the LES grid. Add breaker acceleration and
work terms to the LES governing equations.
(e) Maintain and update the link list of breaking events allowing old breakers to
die, existing breakers to evolve, and new breakers to be born.
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